Safety Evaluation of 5G Antenna Mounted on Power Transmission Towers Using a New Mounting Device Under Environmental Loads

IF 1.1 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY International Journal of Steel Structures Pub Date : 2024-05-22 DOI:10.1007/s13296-024-00850-7
Gaoxin Wang, Weizhou Xu, Yashan Hu, Zengjun An
{"title":"Safety Evaluation of 5G Antenna Mounted on Power Transmission Towers Using a New Mounting Device Under Environmental Loads","authors":"Gaoxin Wang,&nbsp;Weizhou Xu,&nbsp;Yashan Hu,&nbsp;Zengjun An","doi":"10.1007/s13296-024-00850-7","DOIUrl":null,"url":null,"abstract":"<div><p>Mounting 5G antennas on existing power transmission towers can meet the needs of both power supply and 5G communication. Current mounting techniques have the problems of cumbersome process and slow efficiency. This research designs a new type of mounting device of 5G Antenna on power transmission towers. The components and the installation process of this mounting device are introduced, the stress behavior of the mounting device under self-weight load, ice load and wind load is studied through finite element analysis (FEA), and the safety of the mounting device under self-weight load, ice load and wind load is verified through experiments. Furthermore, the safety of power transmission towers is evaluated after 5G antenna is mounted under environmental loads. The results show that: (1) the wind load has the dominant effect on the 5G mounting device, and the proportion of stress caused by wind load is between 89–97%; (2) FEA and experiment show that all the stresses of the device components do not exceed the yield strength limit 355 MPa, indicating that the mounting device is safe to support the 5G antenna under gravity, ice load and wind load; (3) the displacements and stresses of power transmission towers will increase after 5G antenna is mounted, but the values do not exceed the limit, indicating that the power transmission towers are still safe for operation after 5G antenna is mounted.</p></div>","PeriodicalId":596,"journal":{"name":"International Journal of Steel Structures","volume":"24 4","pages":"789 - 798"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Steel Structures","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s13296-024-00850-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mounting 5G antennas on existing power transmission towers can meet the needs of both power supply and 5G communication. Current mounting techniques have the problems of cumbersome process and slow efficiency. This research designs a new type of mounting device of 5G Antenna on power transmission towers. The components and the installation process of this mounting device are introduced, the stress behavior of the mounting device under self-weight load, ice load and wind load is studied through finite element analysis (FEA), and the safety of the mounting device under self-weight load, ice load and wind load is verified through experiments. Furthermore, the safety of power transmission towers is evaluated after 5G antenna is mounted under environmental loads. The results show that: (1) the wind load has the dominant effect on the 5G mounting device, and the proportion of stress caused by wind load is between 89–97%; (2) FEA and experiment show that all the stresses of the device components do not exceed the yield strength limit 355 MPa, indicating that the mounting device is safe to support the 5G antenna under gravity, ice load and wind load; (3) the displacements and stresses of power transmission towers will increase after 5G antenna is mounted, but the values do not exceed the limit, indicating that the power transmission towers are still safe for operation after 5G antenna is mounted.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用新型安装装置对安装在输电塔上的 5G 天线进行环境负荷下的安全评估
在现有输电塔上安装 5G 天线可同时满足供电和 5G 通信的需求。目前的安装技术存在工序繁琐、效率低等问题。本研究设计了一种在输电塔上安装 5G 天线的新型装置。通过有限元分析研究了该安装装置在自重荷载、冰荷载和风荷载作用下的应力行为,并通过实验验证了该安装装置在自重荷载、冰荷载和风荷载作用下的安全性。此外,还评估了 5G 天线在环境负载下安装后输电塔的安全性。结果表明(1)风荷载对 5G 安装装置的影响占主导地位,风荷载引起的应力比例在 89-97% 之间;(2)有限元分析和实验表明,装置部件的所有应力均未超过屈服强度极限 355 MPa,表明安装装置在重力、冰荷载和风荷载下支撑 5G 天线是安全的;(3) 安装 5G 天线后,输电塔的位移和应力会增大,但其值未超过限值,表明安装 5G 天线后,输电塔仍可安全运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Steel Structures
International Journal of Steel Structures 工程技术-工程:土木
CiteScore
2.70
自引率
13.30%
发文量
122
审稿时长
12 months
期刊介绍: The International Journal of Steel Structures provides an international forum for a broad classification of technical papers in steel structural research and its applications. The journal aims to reach not only researchers, but also practicing engineers. Coverage encompasses such topics as stability, fatigue, non-linear behavior, dynamics, reliability, fire, design codes, computer-aided analysis and design, optimization, expert systems, connections, fabrications, maintenance, bridges, off-shore structures, jetties, stadiums, transmission towers, marine vessels, storage tanks, pressure vessels, aerospace, and pipelines and more.
期刊最新文献
Numerical Investigation and Design of Cold-Formed Steel Channel and Z-Sections Undergoing Local and Global Interactive Buckling Stochastic Robustness of Cable Dome Structures Under Impact Loads Fire Behaviour of Rectangular Steel Tubed-Reinforced-Concrete Columns with End Restraints Finite Element Modeling for Concrete-Filled Steel Tube Stub Columns Under Axial Compression Experimental and Analytical Study on Fire Resistance Performance of Mid-High Rise Modular Rectangular Steel Tube Columns Using a 3 h Fireproof Cladding Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1