How Does the Interaction of the Human Thermal Plume and Breathing Affect the Microenvironment and Macroenvironment of an Elevator Cabin?

IF 4.3 2区 环境科学与生态学 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Indoor air Pub Date : 2024-05-22 DOI:10.1155/2024/9593123
Farzad Pourfattah, Weiwei Deng, Lian-Ping Wang
{"title":"How Does the Interaction of the Human Thermal Plume and Breathing Affect the Microenvironment and Macroenvironment of an Elevator Cabin?","authors":"Farzad Pourfattah,&nbsp;Weiwei Deng,&nbsp;Lian-Ping Wang","doi":"10.1155/2024/9593123","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The details of the interaction of human thermal plume and breathing activities are simulated in the current study of an unsteady turbulent flow field in an elevator cabin. Air velocity and temperature distributions of the circulation flow pattern (i.e., the macroenvironment), the breathing-scale microenvironment’s characteristics, and the thermal plume’s fate are analyzed. The current study is aimed at showing how respiratory activities such as breathing and human thermal plumes affect the flow field and respiratory contaminants dispersion pattern in a nonventilated enclosed environment (the elevator cabin). The results from three cases, i.e., breathing thermal manikins, nonbreathing thermal manikins, and isothermal breathing manikins, are contrasted to unveil better the effects of human thermal plume and breathing on the flow field, including the velocity distribution, dispersion pattern of the exhaled contaminant, the human body’s heat transfer coefficient, and the large-scale flow pattern. Results reveal that breathing inhalation increases the upward velocity of the thermal plume on the one hand, which directly affects the microenvironment and indirectly impacts the macroenvironment due to the more vigorous reflected thermal plume. On the other hand, the upward thermal plume reduces the penetration length of the exhaled jet. Breathing activities create ring vortices that connect the microenvironment and the macroenvironment. The circulation flow features a downward flow in the cabin’s center, affecting the vortex strength and contaminant dispersion pattern. Overall, the human thermal plume and human breathing make comparable contributions to the resulting elevator-cabin flow characteristics.</p>\n </div>","PeriodicalId":13529,"journal":{"name":"Indoor air","volume":"2024 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9593123","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor air","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9593123","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The details of the interaction of human thermal plume and breathing activities are simulated in the current study of an unsteady turbulent flow field in an elevator cabin. Air velocity and temperature distributions of the circulation flow pattern (i.e., the macroenvironment), the breathing-scale microenvironment’s characteristics, and the thermal plume’s fate are analyzed. The current study is aimed at showing how respiratory activities such as breathing and human thermal plumes affect the flow field and respiratory contaminants dispersion pattern in a nonventilated enclosed environment (the elevator cabin). The results from three cases, i.e., breathing thermal manikins, nonbreathing thermal manikins, and isothermal breathing manikins, are contrasted to unveil better the effects of human thermal plume and breathing on the flow field, including the velocity distribution, dispersion pattern of the exhaled contaminant, the human body’s heat transfer coefficient, and the large-scale flow pattern. Results reveal that breathing inhalation increases the upward velocity of the thermal plume on the one hand, which directly affects the microenvironment and indirectly impacts the macroenvironment due to the more vigorous reflected thermal plume. On the other hand, the upward thermal plume reduces the penetration length of the exhaled jet. Breathing activities create ring vortices that connect the microenvironment and the macroenvironment. The circulation flow features a downward flow in the cabin’s center, affecting the vortex strength and contaminant dispersion pattern. Overall, the human thermal plume and human breathing make comparable contributions to the resulting elevator-cabin flow characteristics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人体热羽流和呼吸的相互作用如何影响电梯轿厢的微环境和大环境?
本研究模拟了电梯轿厢内的非稳定湍流流场中人体热羽流与呼吸活动相互作用的细节。分析了循环流动模式(即宏观环境)的气流速度和温度分布、呼吸尺度的微环境特征以及热羽流的归宿。本研究旨在说明呼吸活动(如呼吸和人体热羽流)如何影响非通风封闭环境(电梯轿厢)中的流场和呼吸污染物的扩散模式。我们对比了三种情况下的结果,即呼吸热人体模型、非呼吸热人体模型和等温呼吸人体模型,以更好地揭示人体热羽流和呼吸对流场的影响,包括流速分布、呼出污染物的扩散模式、人体传热系数和大尺度流动模式。结果表明,吸入呼吸一方面增加了热羽流的上升速度,直接影响了微环境,同时由于热羽流的反射更加强烈,间接影响了宏观环境。另一方面,向上的热羽流减少了呼出气流的穿透长度。呼吸活动会产生连接微环境和宏观环境的环形漩涡。环流的特点是在机舱中心向下流动,从而影响涡流强度和污染物扩散模式。总体而言,人体热羽流和人体呼吸对电梯轿厢流动特性的影响相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Indoor air
Indoor air 环境科学-工程:环境
CiteScore
10.80
自引率
10.30%
发文量
175
审稿时长
3 months
期刊介绍: The quality of the environment within buildings is a topic of major importance for public health. Indoor Air provides a location for reporting original research results in the broad area defined by the indoor environment of non-industrial buildings. An international journal with multidisciplinary content, Indoor Air publishes papers reflecting the broad categories of interest in this field: health effects; thermal comfort; monitoring and modelling; source characterization; ventilation and other environmental control techniques. The research results present the basic information to allow designers, building owners, and operators to provide a healthy and comfortable environment for building occupants, as well as giving medical practitioners information on how to deal with illnesses related to the indoor environment.
期刊最新文献
Comprehensive Computational Study on the Influences of Particle Size and Relative Humidity on Aerosol/Droplet Transmission in a Ventilated Room Under Stationary and Dynamic Conditions Impact of Cooking Methods on Indoor Air Quality: A Comparative Study of Particulate Matter (PM) and Volatile Organic Compound (VOC) Emissions Evaluation of Seasonal Variations of Human Subjective Responses in China’s Cold Climate Zone COVID-19 Infection Risk Assessment in a Kindergarten Utilizing Continuous Air Quality Monitoring Data Objective and Subjective Indoor Air Quality and Thermal Comfort Indices: Characterization of Mediterranean Climate Archetypal Schools After the COVID-19 Pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1