Development of Context-Based Sentiment Classification for Intelligent Stock Market Prediction

IF 3.7 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Big Data and Cognitive Computing Pub Date : 2024-05-22 DOI:10.3390/bdcc8060051
Nurmaganbet Smatov, Ruslan Kalashnikov, Amandyk Kartbayev
{"title":"Development of Context-Based Sentiment Classification for Intelligent Stock Market Prediction","authors":"Nurmaganbet Smatov, Ruslan Kalashnikov, Amandyk Kartbayev","doi":"10.3390/bdcc8060051","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to sentiment analysis specifically customized for predicting stock market movements, bypassing the need for external dictionaries that are often unavailable for many languages. Our methodology directly analyzes textual data, with a particular focus on context-specific sentiment words within neural network models. This specificity ensures that our sentiment analysis is both relevant and accurate in identifying trends in the stock market. We employ sophisticated mathematical modeling techniques to enhance both the precision and interpretability of our models. Through meticulous data handling and advanced machine learning methods, we leverage large datasets from Twitter and financial markets to examine the impact of social media sentiment on financial trends. We achieved an accuracy exceeding 75%, highlighting the effectiveness of our modeling approach, which we further refined into a convolutional neural network model. This achievement contributes valuable insights into sentiment analysis within the financial domain, thereby improving the overall clarity of forecasting in this field.","PeriodicalId":36397,"journal":{"name":"Big Data and Cognitive Computing","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Cognitive Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bdcc8060051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to sentiment analysis specifically customized for predicting stock market movements, bypassing the need for external dictionaries that are often unavailable for many languages. Our methodology directly analyzes textual data, with a particular focus on context-specific sentiment words within neural network models. This specificity ensures that our sentiment analysis is both relevant and accurate in identifying trends in the stock market. We employ sophisticated mathematical modeling techniques to enhance both the precision and interpretability of our models. Through meticulous data handling and advanced machine learning methods, we leverage large datasets from Twitter and financial markets to examine the impact of social media sentiment on financial trends. We achieved an accuracy exceeding 75%, highlighting the effectiveness of our modeling approach, which we further refined into a convolutional neural network model. This achievement contributes valuable insights into sentiment analysis within the financial domain, thereby improving the overall clarity of forecasting in this field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为智能股市预测开发基于上下文的情绪分类法
本文提出了一种新颖的情感分析方法,专门用于预测股市走势,而无需使用外部词典,因为许多语言通常都无法使用外部词典。我们的方法直接分析文本数据,特别关注神经网络模型中特定语境下的情感词。这种特异性确保了我们的情感分析在识别股市趋势方面的相关性和准确性。我们采用复杂的数学建模技术来提高模型的精确性和可解释性。通过细致的数据处理和先进的机器学习方法,我们利用 Twitter 和金融市场的大型数据集来研究社交媒体情绪对金融趋势的影响。我们取得了超过 75% 的准确率,彰显了我们建模方法的有效性,并将其进一步完善为卷积神经网络模型。这一成果为金融领域的情感分析提供了宝贵的见解,从而提高了该领域预测的整体清晰度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Data and Cognitive Computing
Big Data and Cognitive Computing Business, Management and Accounting-Management Information Systems
CiteScore
7.10
自引率
8.10%
发文量
128
审稿时长
11 weeks
期刊最新文献
An Inquiry into the Evolutionary Game among Tripartite Entities and Strategy Selection within the Framework of Personal Information Authorization Generative Artificial Intelligence: Analyzing Its Future Applications in Additive Manufacturing Analyzing Trends in Digital Transformation Korean Social Media Data: A Semantic Network Analysis Insights into Industrial Efficiency: An Empirical Study of Blockchain Technology Enhancing Self-Supervised Learning through Explainable Artificial Intelligence Mechanisms: A Computational Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1