Kai Yuan, Ye Sun, Yangfeng Peng, Yongming Wei, Yanyang Wu, Quan He
{"title":"Selective adsorption and separation of salicylic acid and 4-hydroxyisophthalic acid from industry-grade 4-hydroxybenzoic acid on UiO-66","authors":"Kai Yuan, Ye Sun, Yangfeng Peng, Yongming Wei, Yanyang Wu, Quan He","doi":"10.1002/apj.3103","DOIUrl":null,"url":null,"abstract":"<p>In this study, UiO-66 was employed for the first time as an adsorbent to separate phenolic acid analogues, specifically 4-hydroxyisophthalic acid and salicylic acid, from impurities. Synthesized in-house, UiO-66 was shown to exhibit high selectivity towards 4-HIPA/4-HBA and SA/4-HBA when a molar equivalent of acetic acid modulator to terephthalic acid was set at 44. The adsorption capacities for 4-HBA, 4-HIPA, and SA were determined to be 56.34, 55.02, and 60.34 mg/g, respectively. Furthermore, it was observed that after six regeneration cycles, the adsorption capacity for 4-HBA remained nearly unchanged, whereas those for 4-HIPA and SA decreased by 5.6% and 2.6%, respectively. FTIR and XPS analyses revealed that all three compounds were adsorbed at the same dominant Zr cluster site on UiO-66, primarily through hydrogen bonding and electrostatic interaction. Dynamic adsorption experiments revealed that 4-HBA was the first to elute, maintaining the residual contents of 4-HIPA and SA below 0.1 wt%. Compared to traditional separation techniques, this paper provided a simple and effective method to purify industrial grade 4-hydroxybenzoic acid.</p>","PeriodicalId":49237,"journal":{"name":"Asia-Pacific Journal of Chemical Engineering","volume":"19 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3103","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, UiO-66 was employed for the first time as an adsorbent to separate phenolic acid analogues, specifically 4-hydroxyisophthalic acid and salicylic acid, from impurities. Synthesized in-house, UiO-66 was shown to exhibit high selectivity towards 4-HIPA/4-HBA and SA/4-HBA when a molar equivalent of acetic acid modulator to terephthalic acid was set at 44. The adsorption capacities for 4-HBA, 4-HIPA, and SA were determined to be 56.34, 55.02, and 60.34 mg/g, respectively. Furthermore, it was observed that after six regeneration cycles, the adsorption capacity for 4-HBA remained nearly unchanged, whereas those for 4-HIPA and SA decreased by 5.6% and 2.6%, respectively. FTIR and XPS analyses revealed that all three compounds were adsorbed at the same dominant Zr cluster site on UiO-66, primarily through hydrogen bonding and electrostatic interaction. Dynamic adsorption experiments revealed that 4-HBA was the first to elute, maintaining the residual contents of 4-HIPA and SA below 0.1 wt%. Compared to traditional separation techniques, this paper provided a simple and effective method to purify industrial grade 4-hydroxybenzoic acid.
期刊介绍:
Asia-Pacific Journal of Chemical Engineering is aimed at capturing current developments and initiatives in chemical engineering related and specialised areas. Publishing six issues each year, the journal showcases innovative technological developments, providing an opportunity for technology transfer and collaboration.
Asia-Pacific Journal of Chemical Engineering will focus particular attention on the key areas of: Process Application (separation, polymer, catalysis, nanotechnology, electrochemistry, nuclear technology); Energy and Environmental Technology (materials for energy storage and conversion, coal gasification, gas liquefaction, air pollution control, water treatment, waste utilization and management, nuclear waste remediation); and Biochemical Engineering (including targeted drug delivery applications).