M. Babcinschi, F. Cruz, N. Duarte, S. Santos, S. Alves, P. Neto
{"title":"Offline robot programming assisted by task demonstration: an AutomationML interoperable solution for glass adhesive application and welding","authors":"M. Babcinschi, F. Cruz, N. Duarte, S. Santos, S. Alves, P. Neto","doi":"10.1080/0951192X.2024.2358042","DOIUrl":null,"url":null,"abstract":"Robots have been successfully deployed in both traditional and novel manufacturing processes. However, they are still difficult to program by non-experts, which limits their accessibility to a wider range of potential users. Programming robots requires expertise in both robotics and the specific manufacturing process in which they are applied. Robot programs created offline often lack parameters that represent relevant manufacturing skills when executing a specific task. These skills encompass aspects like robot orientation and velocity. This paper introduces an intuitive robot programming system designed to capture manufacturing skills from task demonstrations performed by skilled workers. Demonstration data, including orientations and velocities of the working paths, are acquired using a magnetic tracking system fixed to the tools used by the worker. Positional data are extracted from CAD/CAM. Robot path poses are transformed into Cartesian space and validated in simulation, subsequently leading to the generation of robot programs. PathML, an AutomationML-based syntax, integrates robot and manufacturing data across the heterogeneous elements and stages of the manufacturing systems considered. Experiments conducted on the glass adhesive application and welding processes showcased the intuitive nature of the system, with path errors falling within the functional tolerance range.","PeriodicalId":13907,"journal":{"name":"International Journal of Computer Integrated Manufacturing","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Integrated Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/0951192X.2024.2358042","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Robots have been successfully deployed in both traditional and novel manufacturing processes. However, they are still difficult to program by non-experts, which limits their accessibility to a wider range of potential users. Programming robots requires expertise in both robotics and the specific manufacturing process in which they are applied. Robot programs created offline often lack parameters that represent relevant manufacturing skills when executing a specific task. These skills encompass aspects like robot orientation and velocity. This paper introduces an intuitive robot programming system designed to capture manufacturing skills from task demonstrations performed by skilled workers. Demonstration data, including orientations and velocities of the working paths, are acquired using a magnetic tracking system fixed to the tools used by the worker. Positional data are extracted from CAD/CAM. Robot path poses are transformed into Cartesian space and validated in simulation, subsequently leading to the generation of robot programs. PathML, an AutomationML-based syntax, integrates robot and manufacturing data across the heterogeneous elements and stages of the manufacturing systems considered. Experiments conducted on the glass adhesive application and welding processes showcased the intuitive nature of the system, with path errors falling within the functional tolerance range.
期刊介绍:
International Journal of Computer Integrated Manufacturing (IJCIM) reports new research in theory and applications of computer integrated manufacturing. The scope spans mechanical and manufacturing engineering, software and computer engineering as well as automation and control engineering with a particular focus on today’s data driven manufacturing. Terms such as industry 4.0, intelligent manufacturing, digital manufacturing and cyber-physical manufacturing systems are now used to identify the area of knowledge that IJCIM has supported and shaped in its history of more than 30 years.
IJCIM continues to grow and has become a key forum for academics and industrial researchers to exchange information and ideas. In response to this interest, IJCIM is now published monthly, enabling the editors to target topical special issues; topics as diverse as digital twins, transdisciplinary engineering, cloud manufacturing, deep learning for manufacturing, service-oriented architectures, dematerialized manufacturing systems, wireless manufacturing and digital enterprise technologies to name a few.