Magnetohydrodynamic Marangoni fluid flow, heat, and mass transfer over a radially stretching disk in the presence of heat generation and chemical reaction
{"title":"Magnetohydrodynamic Marangoni fluid flow, heat, and mass transfer over a radially stretching disk in the presence of heat generation and chemical reaction","authors":"Hiranmoy Maiti, Swati Mukhopadhyay, K. Vajravelu","doi":"10.1177/09544089241253742","DOIUrl":null,"url":null,"abstract":"The analysis of magnetohydrodynamic (MHD) Marangoni fluid flow, heat, and mass transport over a disk is considered in this article. The fluid is assumed to pass radially over a stretching disk. Suction/blowing at the boundary, internal heat generation/absorption, and a first-order chemical reaction are also considered. By using appropriate similarity transformations, the governing nonlinear partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). These ODEs along with the appropriate boundary conditions for the model are solved numerically by a shooting technique using MATHEMATICA software. The obtained results are compared with the available results in the literature for some special cases. The effects of the magnetic parameter, the Marangoni number, Marangoni ratio parameter along with the other pertinent parameters on fluid flow, heat and mass transport are analyzed and discussed in detail. It is noted that higher magnetic field depresses the fluid velocity whereas the fluid temperature and fluid concentration are uplifted with an increase in the magnetic field parameter. A quite opposite behavior is observed for Marangoni number. Marangoni ratio parameter boosted the fluid velocity as well as the fluid concentration and the temperature. Also externally applied suction significantly affects the fluid behavior. Increasing chemical reaction parameter reduces the fluid concentration. It is observed that a maximum increase in the Nusselt number occurs for Marangoni parameter Ma, which is 34.75595% when the suction/injection parameter s = 0.5. Also, for Marangoni ratio parameter Ra, a maximum increase in Nusselt number occurs, which is 6.7884% when suction/injection parameter s = 0.5.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"9 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241253742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The analysis of magnetohydrodynamic (MHD) Marangoni fluid flow, heat, and mass transport over a disk is considered in this article. The fluid is assumed to pass radially over a stretching disk. Suction/blowing at the boundary, internal heat generation/absorption, and a first-order chemical reaction are also considered. By using appropriate similarity transformations, the governing nonlinear partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs). These ODEs along with the appropriate boundary conditions for the model are solved numerically by a shooting technique using MATHEMATICA software. The obtained results are compared with the available results in the literature for some special cases. The effects of the magnetic parameter, the Marangoni number, Marangoni ratio parameter along with the other pertinent parameters on fluid flow, heat and mass transport are analyzed and discussed in detail. It is noted that higher magnetic field depresses the fluid velocity whereas the fluid temperature and fluid concentration are uplifted with an increase in the magnetic field parameter. A quite opposite behavior is observed for Marangoni number. Marangoni ratio parameter boosted the fluid velocity as well as the fluid concentration and the temperature. Also externally applied suction significantly affects the fluid behavior. Increasing chemical reaction parameter reduces the fluid concentration. It is observed that a maximum increase in the Nusselt number occurs for Marangoni parameter Ma, which is 34.75595% when the suction/injection parameter s = 0.5. Also, for Marangoni ratio parameter Ra, a maximum increase in Nusselt number occurs, which is 6.7884% when suction/injection parameter s = 0.5.