{"title":"Identification of Lightning Strike Damage Severity Using Pulse Thermography Through Integration of Thermal Data","authors":"T. M. Harrell, J. M. Dulieu-Barton, O. T. Thomsen","doi":"10.1007/s40799-024-00713-0","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon fibre reinforced polymers (CFRP) structures, e.g., wind turbine blades, are suspectable to direct lightning strikes due to their semiconductive nature and ability to conduct current. It is critical to identify and evaluate lightning damage as it can cause premature failure of the primary load carrying components. Direct strike lightning damage has been traditionally identified and assessed by ultrasonic (UT) inspection, which is time consuming, usually requires contact, and does not directly provide a measure of damage severity. An appealing alternative to UT is pulsed thermography (PT), which takes minutes to conduct rather than hours and does not require a couplant. The aim of this work is to explore the application of pulse thermography to identify and evaluate the damage state of CFRP panels damaged by simulated lightning strike. A new analysis technique is presented that provides a damage severity metric which allows damage to be categorized, separated, and quantified.</p></div>","PeriodicalId":553,"journal":{"name":"Experimental Techniques","volume":"49 1","pages":"33 - 43"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40799-024-00713-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Techniques","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40799-024-00713-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fibre reinforced polymers (CFRP) structures, e.g., wind turbine blades, are suspectable to direct lightning strikes due to their semiconductive nature and ability to conduct current. It is critical to identify and evaluate lightning damage as it can cause premature failure of the primary load carrying components. Direct strike lightning damage has been traditionally identified and assessed by ultrasonic (UT) inspection, which is time consuming, usually requires contact, and does not directly provide a measure of damage severity. An appealing alternative to UT is pulsed thermography (PT), which takes minutes to conduct rather than hours and does not require a couplant. The aim of this work is to explore the application of pulse thermography to identify and evaluate the damage state of CFRP panels damaged by simulated lightning strike. A new analysis technique is presented that provides a damage severity metric which allows damage to be categorized, separated, and quantified.
期刊介绍:
Experimental Techniques is a bimonthly interdisciplinary publication of the Society for Experimental Mechanics focusing on the development, application and tutorial of experimental mechanics techniques.
The purpose for Experimental Techniques is to promote pedagogical, technical and practical advancements in experimental mechanics while supporting the Society''s mission and commitment to interdisciplinary application, research and development, education, and active promotion of experimental methods to:
- Increase the knowledge of physical phenomena
- Further the understanding of the behavior of materials, structures, and systems
- Provide the necessary physical observations necessary to improve and assess new analytical and computational approaches.