Effectiveness assessment of protected areas based on the states, trends, and relative changes in forest ecosystem: a case study in the Three Parallel Rivers Region, China
Hua Shen, Chunting Feng, Jinghui Tian, Luqiong Fan, Ming Cao, Wei Wang
{"title":"Effectiveness assessment of protected areas based on the states, trends, and relative changes in forest ecosystem: a case study in the Three Parallel Rivers Region, China","authors":"Hua Shen, Chunting Feng, Jinghui Tian, Luqiong Fan, Ming Cao, Wei Wang","doi":"10.3389/fevo.2024.1321974","DOIUrl":null,"url":null,"abstract":"Establishing protected areas (PAs) is a major measure of biodiversity conservation, and various methods have been explored to assess PAs’ effectiveness. However, those methods mainly compared the relative changes in land cover between treated samples inside the PAs and their matched samples outside the PAs, which would produce misjudgments, especially in some climax communities with a relatively steady state. Thus, in this study, we constructed an integrated framework through a series of assessments according to the state, trend, and relative change of each PA to explore the conservation effectiveness of PAs in the Three Parallel Rivers Region in China from 2000 to 2020. Here, “state” refers to the difference among samples from within and outside the PA, assessed through yearly sample mean comparison. “Trend” means linear regression of mean forest area of each PA throughout the assessment period. “Relative change” means the difference in the mean value of the slope of forest changes between the treated samples inside each PA and their matched control samples outside of PAs. The entire forest area within all PAs in the Three Parallel Rivers Region showed a significant increasing trend from 2000 to 2020 (R2 = 0.919, P<0.05). Among all the PAs, twelve (86%) had a positive effect on protecting the forest ecosystem, and two had a nonsignificant effect. Among the factors affecting the state and relative change in PAs’ forests, the annual total precipitation was the most important, followed by distance to the nearest road. Moreover, the management-level variable was an essential factor in the state of PAs’ forest ecosystems, which indicated that national PAs (nature reserves and natural parks) were in a better state than local (provincial- and county-level) nature reserves. Overall, the conservation effectiveness of forests in PAs was assessed at a regional scale in the Three Parallel Rivers Region, implying that our framework would be additional useful in regions with high biodiversity and steady ecosystems. This framework better avoids underestimating conservation effectiveness assessment tasks than traditional methods do. Thus, we posit that this framework is suitable for future global or country-level assessments.","PeriodicalId":12367,"journal":{"name":"Frontiers in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3389/fevo.2024.1321974","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing protected areas (PAs) is a major measure of biodiversity conservation, and various methods have been explored to assess PAs’ effectiveness. However, those methods mainly compared the relative changes in land cover between treated samples inside the PAs and their matched samples outside the PAs, which would produce misjudgments, especially in some climax communities with a relatively steady state. Thus, in this study, we constructed an integrated framework through a series of assessments according to the state, trend, and relative change of each PA to explore the conservation effectiveness of PAs in the Three Parallel Rivers Region in China from 2000 to 2020. Here, “state” refers to the difference among samples from within and outside the PA, assessed through yearly sample mean comparison. “Trend” means linear regression of mean forest area of each PA throughout the assessment period. “Relative change” means the difference in the mean value of the slope of forest changes between the treated samples inside each PA and their matched control samples outside of PAs. The entire forest area within all PAs in the Three Parallel Rivers Region showed a significant increasing trend from 2000 to 2020 (R2 = 0.919, P<0.05). Among all the PAs, twelve (86%) had a positive effect on protecting the forest ecosystem, and two had a nonsignificant effect. Among the factors affecting the state and relative change in PAs’ forests, the annual total precipitation was the most important, followed by distance to the nearest road. Moreover, the management-level variable was an essential factor in the state of PAs’ forest ecosystems, which indicated that national PAs (nature reserves and natural parks) were in a better state than local (provincial- and county-level) nature reserves. Overall, the conservation effectiveness of forests in PAs was assessed at a regional scale in the Three Parallel Rivers Region, implying that our framework would be additional useful in regions with high biodiversity and steady ecosystems. This framework better avoids underestimating conservation effectiveness assessment tasks than traditional methods do. Thus, we posit that this framework is suitable for future global or country-level assessments.
期刊介绍:
Frontiers in Ecology and Evolution publishes rigorously peer-reviewed research across fundamental and applied sciences, to provide ecological and evolutionary insights into our natural and anthropogenic world, and how it should best be managed. Field Chief Editor Mark A. Elgar at the University of Melbourne is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Eminent biologist and theist Theodosius Dobzhansky’s astute observation that “Nothing in biology makes sense except in the light of evolution” has arguably even broader relevance now than when it was first penned in The American Biology Teacher in 1973. One could similarly argue that not much in evolution makes sense without recourse to ecological concepts: understanding diversity — from microbial adaptations to species assemblages — requires insights from both ecological and evolutionary disciplines. Nowadays, technological developments from other fields allow us to address unprecedented ecological and evolutionary questions of astonishing detail, impressive breadth and compelling inference.
The specialty sections of Frontiers in Ecology and Evolution will publish, under a single platform, contemporary, rigorous research, reviews, opinions, and commentaries that cover the spectrum of ecological and evolutionary inquiry, both fundamental and applied. Articles are peer-reviewed according to the Frontiers review guidelines, which evaluate manuscripts on objective editorial criteria. Through this unique, Frontiers platform for open-access publishing and research networking, Frontiers in Ecology and Evolution aims to provide colleagues and the broader community with ecological and evolutionary insights into our natural and anthropogenic world, and how it might best be managed.