Spin-orbit torque driven domain wall motion in the absence of Dzyaloshinskii-Moriya interactions

A. Thiaville, J. Miltat
{"title":"Spin-orbit torque driven domain wall motion in the absence of Dzyaloshinskii-Moriya interactions","authors":"A. Thiaville, J. Miltat","doi":"10.1209/0295-5075/ad4e62","DOIUrl":null,"url":null,"abstract":"\n The fine structure and dynamics of magnetic domain walls in ultrathin films with perpendicular magnetization, in presence of a secondary anisotropy, is analysed owing to micro-magnetics. Two cases are considered, a cubic anisotropy typical for (111) oriented garnet epitaxial films, and an orthorhombic anisotropy as found in e.g. Co/W(110) films. The statics is solved first, showing that, in general, domain walls are not of the pure Bloch type. The dynamics under the spin Hall effect induced by a current flowing in an adjacent layer is then monitored. Finite and non-negligible domain wall velocities are predicted in both cases, in the absence of Dzyaloshinskii-Moriya interactions, with distinct behaviours regarding the current density and its orientation with respect to the secondary anisotropy axes. The relevance of these results to recent reports of current driven domain wall dynamics in insulating ultrathin garnet films, capped with platinum, is discussed.","PeriodicalId":503117,"journal":{"name":"Europhysics Letters","volume":"138 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europhysics Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad4e62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fine structure and dynamics of magnetic domain walls in ultrathin films with perpendicular magnetization, in presence of a secondary anisotropy, is analysed owing to micro-magnetics. Two cases are considered, a cubic anisotropy typical for (111) oriented garnet epitaxial films, and an orthorhombic anisotropy as found in e.g. Co/W(110) films. The statics is solved first, showing that, in general, domain walls are not of the pure Bloch type. The dynamics under the spin Hall effect induced by a current flowing in an adjacent layer is then monitored. Finite and non-negligible domain wall velocities are predicted in both cases, in the absence of Dzyaloshinskii-Moriya interactions, with distinct behaviours regarding the current density and its orientation with respect to the secondary anisotropy axes. The relevance of these results to recent reports of current driven domain wall dynamics in insulating ultrathin garnet films, capped with platinum, is discussed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在没有 Dzyaloshinskii-Moriya 相互作用的情况下,自旋轨道力矩驱动的畴壁运动
本研究利用微磁学分析了垂直磁化超薄薄膜中磁畴壁的结构和动态,其中存在二次各向异性。研究考虑了两种情况,一种是 (111) 取向石榴石外延薄膜的典型立方各向异性,另一种是 Co/W(110) 薄膜的正交各向异性。首先求解的是静力学,结果表明,一般来说,畴壁不是纯布洛赫类型的。然后,在相邻层中流动的电流诱导下,对自旋霍尔效应下的动力学进行了监测。在这两种情况下,在没有 Dzyaloshinskii-Moriya 相互作用的情况下,都预测出了有限且不可忽略的畴壁速度,电流密度及其相对于次级各向异性轴的取向具有不同的行为。本文讨论了这些结果与最近关于绝缘超薄石榴石薄膜中电流驱动的畴壁动力学的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large self-heating by trapped-flux reduction in Sn-Pb solders Imperfect diffusion-controlled reactions for stochastic processes with memory Schrödinger evolution of a scalar field in Riemannian and pseudo Riemannian expanding metrics Evolution of the crack patterns in nanostructured films with subsequent wetting and drying cycles Narrowband stimulated Raman scattering and molecular modulation in anti-resonant hollow-core fibres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1