Airlift bioreactors for bioremediation of water contaminated with hydrocarbons in agricultural regions

IF 1.6 4区 工程技术 Q3 Chemical Engineering International Journal of Chemical Reactor Engineering Pub Date : 2024-05-21 DOI:10.1515/ijcre-2024-0009
E. J. Sandoval-Herazo, Israel Rodríguez-Torres, G. Espinosa-Reyes, M. Lizardi-Jiménez
{"title":"Airlift bioreactors for bioremediation of water contaminated with hydrocarbons in agricultural regions","authors":"E. J. Sandoval-Herazo, Israel Rodríguez-Torres, G. Espinosa-Reyes, M. Lizardi-Jiménez","doi":"10.1515/ijcre-2024-0009","DOIUrl":null,"url":null,"abstract":"\n The superficial gas velocity (Ug) values of 1.0, 1.5 and 2.0 cm s−1 showed a diesel consumption of 59.70, 58.20 and 65.20 %, respectively. The productivity of the airlift bioreactors (ALBs) was 0.030, 0.026 and 0.034 g L−1 d−1, respectively. During 10 days of operation, the emulsification index (E\n 24 %) values for Ug 1.0, 2.0 and 2.0 cm s−1 were 15.79, 15.07 and 12.85 %, respectively. Likewise, an increase in the degradation and suspended solids was observed when increasing the Ug from 1.0 to 2.0 cm s−1 of the ALBs, whereas a decrease in emulsification index E\n 24 % was observed for an Ug of 2.0 cm s−1. According to the results, the Ug of 2.0 cm s−1 was the most effective for increasing the degradation of diesel and growth of the consortium among the Ug evaluated. Furthermore, the reduction of E\n 24 % in this Ug suggests that the consortium uses a mixed form of hydrocarbon consumption, both by direct contact and in emulsified form.","PeriodicalId":51069,"journal":{"name":"International Journal of Chemical Reactor Engineering","volume":"125 10","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Reactor Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/ijcre-2024-0009","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The superficial gas velocity (Ug) values of 1.0, 1.5 and 2.0 cm s−1 showed a diesel consumption of 59.70, 58.20 and 65.20 %, respectively. The productivity of the airlift bioreactors (ALBs) was 0.030, 0.026 and 0.034 g L−1 d−1, respectively. During 10 days of operation, the emulsification index (E 24 %) values for Ug 1.0, 2.0 and 2.0 cm s−1 were 15.79, 15.07 and 12.85 %, respectively. Likewise, an increase in the degradation and suspended solids was observed when increasing the Ug from 1.0 to 2.0 cm s−1 of the ALBs, whereas a decrease in emulsification index E 24 % was observed for an Ug of 2.0 cm s−1. According to the results, the Ug of 2.0 cm s−1 was the most effective for increasing the degradation of diesel and growth of the consortium among the Ug evaluated. Furthermore, the reduction of E 24 % in this Ug suggests that the consortium uses a mixed form of hydrocarbon consumption, both by direct contact and in emulsified form.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于对农业区受碳氢化合物污染的水体进行生物修复的气举生物反应器
表层气体速度(Ug)值为 1.0、1.5 和 2.0 厘米/秒-1 时,柴油消耗量分别为 59.70%、58.20%和 65.20%。气提生物反应器(ALB)的生产率分别为 0.030、0.026 和 0.034 g L-1 d-1。在 10 天的运行期间,Ug 1.0、2.0 和 2.0 cm s-1 的乳化指数(E 24 %)值分别为 15.79、15.07 和 12.85 %。同样,当 ALB 的 Ug 值从 1.0 cm s-1 增加到 2.0 cm s-1 时,降解率和悬浮固体增加,而当 Ug 值为 2.0 cm s-1 时,乳化指数 E 24 % 下降。结果表明,在所评估的 Ug 值中,2.0 cm s-1 的 Ug 值对提高柴油降解和菌群生长最有效。此外,在该 Ug 下 E 值减少了 24%,这表明菌群采用混合形式消耗碳氢化合物,既有直接接触形式,也有乳化形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: The International Journal of Chemical Reactor Engineering covers the broad fields of theoretical and applied reactor engineering. The IJCRE covers topics drawn from the substantial areas of overlap between catalysis, reaction and reactor engineering. The journal is presently edited by Hugo de Lasa and Charles Xu, counting with an impressive list of Editorial Board leading specialists in chemical reactor engineering. Authors include notable international professors and R&D industry leaders.
期刊最新文献
VOCs (toluene) removal from iron ore sintering flue gas via LaBO3 (B = Cu, Fe, Cr, Mn, Co) perovskite catalysts: experiment and mechanism Ethyl acetate production by Fischer esterification: use of excess of acetic acid and complete separation sequence Thermodynamic and kinetic study on the catalysis of tributyl aconitate by Amberlyst-15 in a cyclic fixed-bed reactor R dot approach for kinetic modelling of WGS over noble metals Retraction of: Computational fluid dynamic simulations to improve heat transfer in shell tube heat exchangers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1