Generic modelling to develop thermal yield nomograms for coaxial deep borehole heat exchangers (DBHE)

IF 17.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-21 DOI:10.1144/qjegh2023-162
D. Banks, C. Brown, I. Kolo, G. Falcone
{"title":"Generic modelling to develop thermal yield nomograms for coaxial deep borehole heat exchangers (DBHE)","authors":"D. Banks, C. Brown, I. Kolo, G. Falcone","doi":"10.1144/qjegh2023-162","DOIUrl":null,"url":null,"abstract":"\n Numerical modelling of coaxial deep borehole heat exchangers (DBHE) can be resource-intensive. Simpler, transparent analytical models and nomograms would be valuable to developers and geologists for evaluating thermal output. An analytical computational model by Beier (2020) was used to produce nomograms of geothermal heat yield by systematically varying DBHE depth and rock thermal conductivity, while assuming two generic simplified DBHE designs, a geothermal gradient of 25°C/km and a fluid circulation rate of 5 L/s. Continuous 25-year heat yields from a 1000 m DBHE range from 27.3 to 54.8 kW for thermal conductivities of 1.6 to 3.6 W/m/K. For a 3000 m DBHE, they range from 165 kW to 281 kW. Effective borehole thermal resistance (\n \n R\n b,eff\n \n ) increases strongly as DBHE depth increases, due to internal heat transfer between upflow and downflow elements. Simulations correspond well with results from industry-standard Earth Energy Designer software for shallow 200 m coaxial BHE. They modestly underestimate OpenGeoSys numerical modelled thermal yields by 2-4% for DBHE in the range 1000 to 3000 m depth. Modelled temperature evolution closely approximates an analytical “line heat source” approach, implying that simpler analytical approaches are plausible for DBHE simulation. Future research should focus on methods for forward quantification of\n \n R\n b,eff\n \n .\n \n \n Supplementary material:\n https://doi.org/10.6084/m9.figshare.c.7237887\n","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":"17 12","pages":""},"PeriodicalIF":17.7000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1144/qjegh2023-162","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Numerical modelling of coaxial deep borehole heat exchangers (DBHE) can be resource-intensive. Simpler, transparent analytical models and nomograms would be valuable to developers and geologists for evaluating thermal output. An analytical computational model by Beier (2020) was used to produce nomograms of geothermal heat yield by systematically varying DBHE depth and rock thermal conductivity, while assuming two generic simplified DBHE designs, a geothermal gradient of 25°C/km and a fluid circulation rate of 5 L/s. Continuous 25-year heat yields from a 1000 m DBHE range from 27.3 to 54.8 kW for thermal conductivities of 1.6 to 3.6 W/m/K. For a 3000 m DBHE, they range from 165 kW to 281 kW. Effective borehole thermal resistance ( R b,eff ) increases strongly as DBHE depth increases, due to internal heat transfer between upflow and downflow elements. Simulations correspond well with results from industry-standard Earth Energy Designer software for shallow 200 m coaxial BHE. They modestly underestimate OpenGeoSys numerical modelled thermal yields by 2-4% for DBHE in the range 1000 to 3000 m depth. Modelled temperature evolution closely approximates an analytical “line heat source” approach, implying that simpler analytical approaches are plausible for DBHE simulation. Future research should focus on methods for forward quantification of R b,eff . Supplementary material: https://doi.org/10.6084/m9.figshare.c.7237887
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
开发同轴深孔热交换器(DBHE)热产量名义图的通用模型
同轴深孔热交换器(DBHE)的数值建模需要大量资源。更简单、透明的分析模型和名义图对于开发人员和地质学家评估热输出非常有价值。Beier 的分析计算模型(2020 年)通过系统地改变 DBHE 的深度和岩石热传导率,同时假设两种通用的简化 DBHE 设计、25°C/km 的地热梯度和 5 升/秒的流体循环速率,生成了地热产出名义图。在导热系数为 1.6 到 3.6 W/m/K 的情况下,1000 米 DBHE 25 年的连续热量产出为 27.3 到 54.8 kW。3000 米 DBHE 的产热量范围为 165 kW 至 281 kW。有效井眼热阻(R b,eff)随着 DBHE 深度的增加而剧增,这是由于上流体和下流体之间的内部热传递造成的。模拟结果与工业标准 Earth Energy Designer 软件对 200 米同轴浅层 BHE 的模拟结果非常吻合。对于深度在 1000 米至 3000 米之间的 DBHE,模拟结果略微低估了 OpenGeoSys 数值模拟热产率 2-4%。模拟的温度变化与分析的 "线热源 "方法非常接近,这意味着对于 DBHE 模拟来说,更简单的分析方法是可行的。未来的研究应侧重于 R b,eff 的前向量化方法。 补充材料:https://doi.org/10.6084/m9.figshare.c.7237887
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Theoretical Insights on the Regulatory Mechanisms of Structure and Doping on the Photoluminescence of Ligand Protected Gold Nanoclusters Aluminylenes: Synthesis, Reactivity, and Catalysis Biologically Adaptable Quantum Dots: Intracellular in Situ Synthetic Strategy and Mechanism Combating Antiviral Drug Resistance: A Multipronged Strategy Atomically Precise Metal Clusters for NIR-II Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1