On non-hydrogen-atom products of thermal decomposition of benzyl radical: A theoretical investigation by the transition state theory/multi-well master equation approach

IF 1.5 4区 化学 Q4 CHEMISTRY, PHYSICAL International Journal of Chemical Kinetics Pub Date : 2024-05-21 DOI:10.1002/kin.21729
Qinghui Meng, Yicheng Chi, Lidong Zhang, Peng Zhang
{"title":"On non-hydrogen-atom products of thermal decomposition of benzyl radical: A theoretical investigation by the transition state theory/multi-well master equation approach","authors":"Qinghui Meng,&nbsp;Yicheng Chi,&nbsp;Lidong Zhang,&nbsp;Peng Zhang","doi":"10.1002/kin.21729","DOIUrl":null,"url":null,"abstract":"<p>Benzyl radical (C<sub>7</sub>H<sub>7</sub>), one of the resonantly stabilized hydrocarbon radicals, is one of the significant precursors of polycyclic aromatic hydrocarbons in interstellar media and combustion engines. The unimolecular decomposition of benzyl radical is still incompletely understood despite of its importance and relatively small molecular size. The decomposition reactions of benzyl radical were investigated in the present study by using the ab initio transition state theory (TST) and the multi-well master equation theory. Specifically, all reaction pathways on the potential energy surface of C<sub>7</sub>H<sub>7</sub> was calculated at the level of QCISD(T)/CBS. For the reactions with multireference characters, the CASPT2(9e,7o)/aug-cc-pVTZ method was used to calculate the vibrational frequencies and energies of structures along the one-dimensional reaction coordinate of the breaking bond. The high-pressure limits of rate constants for all the reactions were obtained by using the TST except those for C<sub>7</sub>H<sub>6</sub> + H and C<sub>6</sub>H<sub>4</sub> + CH<sub>3</sub> by the variational TST. The pressure-dependent rate constants were obtained by using the multi-well master equation simulations. The calculated rate constants agree well with available experimental and theoretical data in the literature. Moreover, the present results identify the composition of the non-hydrogen-atom production observed in previous experiments, which provide new insights into the reactions of aromatic compounds.</p>","PeriodicalId":13894,"journal":{"name":"International Journal of Chemical Kinetics","volume":"56 10","pages":"571-583"},"PeriodicalIF":1.5000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Chemical Kinetics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/kin.21729","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Benzyl radical (C7H7), one of the resonantly stabilized hydrocarbon radicals, is one of the significant precursors of polycyclic aromatic hydrocarbons in interstellar media and combustion engines. The unimolecular decomposition of benzyl radical is still incompletely understood despite of its importance and relatively small molecular size. The decomposition reactions of benzyl radical were investigated in the present study by using the ab initio transition state theory (TST) and the multi-well master equation theory. Specifically, all reaction pathways on the potential energy surface of C7H7 was calculated at the level of QCISD(T)/CBS. For the reactions with multireference characters, the CASPT2(9e,7o)/aug-cc-pVTZ method was used to calculate the vibrational frequencies and energies of structures along the one-dimensional reaction coordinate of the breaking bond. The high-pressure limits of rate constants for all the reactions were obtained by using the TST except those for C7H6 + H and C6H4 + CH3 by the variational TST. The pressure-dependent rate constants were obtained by using the multi-well master equation simulations. The calculated rate constants agree well with available experimental and theoretical data in the literature. Moreover, the present results identify the composition of the non-hydrogen-atom production observed in previous experiments, which provide new insights into the reactions of aromatic compounds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于苄基自由基热分解的非氢原子产物:过渡态理论/多孔主方程方法的理论研究
苄基自由基(C7H7)是共振稳定的碳氢自由基之一,是星际介质和燃烧发动机中多环芳烃的重要前体之一。尽管苄基自由基非常重要,而且分子尺寸相对较小,但人们对其单分子分解的了解仍然不够深入。本研究采用ab initio 过渡态理论(TST)和多孔主方程理论研究了苄基自由基的分解反应。具体而言,在 QCISD(T)/CBS 水平上计算了 C7H7 势能面上的所有反应途径。对于具有多参考特性的反应,采用 CASPT2(9e,7o)/aug-cc-pVTZ 方法计算了沿断裂键一维反应坐标的振动频率和结构能量。除了 C7H6 + H 和 C6H4 + CH3 的反应是通过变分 TST 得到的之外,所有反应的高压极限速率常数都是通过 TST 得到的。与压力有关的速率常数是通过多孔主方程模拟得到的。计算出的速率常数与文献中现有的实验和理论数据非常吻合。此外,本结果还确定了之前实验中观察到的非氢原子生成的组成,为芳香化合物的反应提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
6.70%
发文量
74
审稿时长
3 months
期刊介绍: As the leading archival journal devoted exclusively to chemical kinetics, the International Journal of Chemical Kinetics publishes original research in gas phase, condensed phase, and polymer reaction kinetics, as well as biochemical and surface kinetics. The Journal seeks to be the primary archive for careful experimental measurements of reaction kinetics, in both simple and complex systems. The Journal also presents new developments in applied theoretical kinetics and publishes large kinetic models, and the algorithms and estimates used in these models. These include methods for handling the large reaction networks important in biochemistry, catalysis, and free radical chemistry. In addition, the Journal explores such topics as the quantitative relationships between molecular structure and chemical reactivity, organic/inorganic chemistry and reaction mechanisms, and the reactive chemistry at interfaces.
期刊最新文献
Issue Information Issue Information Issue Information Decomposition of CH 3 NH 2 ${\rm CH}_3{\rm NH}_2$ : Implications for CH x / NH y ${\rm CH}_{\rm {\it x}}/{\rm NH}_{\rm {\it y}}$ radical–radical reactions Force training neural network potential energy surface models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1