Predictive power control strategy without grid voltage sensors of the Vienna rectifier

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-05-21 DOI:10.1049/pel2.12707
Tao Yang, Lan Chen, Yiru Miao
{"title":"Predictive power control strategy without grid voltage sensors of the Vienna rectifier","authors":"Tao Yang,&nbsp;Lan Chen,&nbsp;Yiru Miao","doi":"10.1049/pel2.12707","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a predictive power control strategy for the three-phase, six-switch Vienna rectifier without grid voltage sensors to reduce the hardware cost and complexity of a high-power PWM rectifier system. Firstly, an algorithm for calculating the AC-side voltage in the <i>αβ</i> coordinate system is derived according to the operating principle of the Vienna rectifier, and a voltage observer is constructed by combining a second-order low-pass filter to estimate the grid voltage. Secondly, a soft start method is designed to solve the problem that the rectifier is prone to inrush current when it is started. Furthermore, the control method of grid voltage sensorless is combined with predictive power control with good dynamic characteristics and simple parameter settings to form the control strategy proposed in this paper. Finally, simulation analysis and experimental verification are carried out on the proposed control strategy. Simulation and experimental results show that the grid voltage estimation has high accuracy, a good surge current suppression effect, unit power factor operation, low input current harmonic content, and good dynamic and steady-state performance. Therefore, the correctness and effectiveness of the strategy proposed in this paper are verified.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12707","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12707","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a predictive power control strategy for the three-phase, six-switch Vienna rectifier without grid voltage sensors to reduce the hardware cost and complexity of a high-power PWM rectifier system. Firstly, an algorithm for calculating the AC-side voltage in the αβ coordinate system is derived according to the operating principle of the Vienna rectifier, and a voltage observer is constructed by combining a second-order low-pass filter to estimate the grid voltage. Secondly, a soft start method is designed to solve the problem that the rectifier is prone to inrush current when it is started. Furthermore, the control method of grid voltage sensorless is combined with predictive power control with good dynamic characteristics and simple parameter settings to form the control strategy proposed in this paper. Finally, simulation analysis and experimental verification are carried out on the proposed control strategy. Simulation and experimental results show that the grid voltage estimation has high accuracy, a good surge current suppression effect, unit power factor operation, low input current harmonic content, and good dynamic and steady-state performance. Therefore, the correctness and effectiveness of the strategy proposed in this paper are verified.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无电网电压传感器的维也纳整流器功率预测控制策略
本文针对无电网电压传感器的三相六开关维也纳整流器提出了一种预测功率控制策略,以降低大功率 PWM 整流器系统的硬件成本和复杂性。首先,根据维也纳整流器的工作原理,推导出一种在 αβ 坐标系中计算交流侧电压的算法,并结合二阶低通滤波器构建了一个电压观测器来估计电网电压。其次,设计了一种软启动方法,以解决整流器启动时容易产生冲击电流的问题。此外,无电网电压传感器的控制方法与动态特性好、参数设置简单的预测功率控制相结合,形成了本文提出的控制策略。最后,对所提出的控制策略进行了仿真分析和实验验证。仿真和实验结果表明,电网电压估计具有较高的精度、良好的浪涌电流抑制效果、单位功率因数运行、较低的输入电流谐波含量以及良好的动态和稳态性能。因此,本文提出的策略的正确性和有效性得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
The change process questionnaire (CPQ): A psychometric validation. Differential Costs of Raising Grandchildren on Older Mother-Adult Child Relations in Black and White Families. Does Resilience Mediate the Relationship Between Negative Self-Image and Psychological Distress in Middle-Aged and Older Gay and Bisexual Men? Intergenerational Relations and Well-being Among Older Middle Eastern/Arab American Immigrants During the COVID-19 Pandemic. Caregiving Appraisals and Emotional Valence: Moderating Effects of Activity Participation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1