Investigation on the Reduced-Order Model for the Hydrofoil of the Blended-Wing-Body Underwater Glider Flow Control with Steady-Stream Suction and Jets Based on the POD Method
{"title":"Investigation on the Reduced-Order Model for the Hydrofoil of the Blended-Wing-Body Underwater Glider Flow Control with Steady-Stream Suction and Jets Based on the POD Method","authors":"Huan Wang, Xiaoxu Du, Yuli Hu","doi":"10.3390/act13060194","DOIUrl":null,"url":null,"abstract":"The rapid acquisition of flow field characterization information is crucial for closed-loop active flow control. The proper orthogonal decomposition (POD) method is a widely used flow field downscaling modeling method to obtain flow characteristics effectively. Based on the POD method, a flow field reduced-order model (ROM) is constructed in this paper for the flow field control of a hydrofoil of a blended-wing-body underwater glider (BWB-UG) with stabilized suction and blowing forces. Compared with the computational fluid dynamics (CFD) simulation, the computational time required to predict the target flow field using the established POD-ROM is only about 0.1 s, which is significantly less than the CFD simulation time. The average relative error of the predicted surface pressure is not more than 6.9%. These results confirm the accuracy and efficiency of the POD-ROM in reconstructing flow characteristics. The timeliness problem of fast flow field prediction in BWB-UG active flow control is solved by establishing a fast prediction model in an innovative way.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act13060194","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid acquisition of flow field characterization information is crucial for closed-loop active flow control. The proper orthogonal decomposition (POD) method is a widely used flow field downscaling modeling method to obtain flow characteristics effectively. Based on the POD method, a flow field reduced-order model (ROM) is constructed in this paper for the flow field control of a hydrofoil of a blended-wing-body underwater glider (BWB-UG) with stabilized suction and blowing forces. Compared with the computational fluid dynamics (CFD) simulation, the computational time required to predict the target flow field using the established POD-ROM is only about 0.1 s, which is significantly less than the CFD simulation time. The average relative error of the predicted surface pressure is not more than 6.9%. These results confirm the accuracy and efficiency of the POD-ROM in reconstructing flow characteristics. The timeliness problem of fast flow field prediction in BWB-UG active flow control is solved by establishing a fast prediction model in an innovative way.
期刊介绍:
Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.