Dr. Meng Dang, Prof. Nan Lu, Dr. Xuzhi Shi, Dr. Qiang Li, Prof. Bin Lin, Heng Dong, Xiaolin Han, Jiaxin Rui, Prof. Junfen Sun, Wei Luo, Dr. Zhaogang Teng, Xiaodan Su
{"title":"Carrier-Free Disulfiram Based Nanomedicine for Enhanced Cancer Therapy","authors":"Dr. Meng Dang, Prof. Nan Lu, Dr. Xuzhi Shi, Dr. Qiang Li, Prof. Bin Lin, Heng Dong, Xiaolin Han, Jiaxin Rui, Prof. Junfen Sun, Wei Luo, Dr. Zhaogang Teng, Xiaodan Su","doi":"10.1002/cnma.202400139","DOIUrl":null,"url":null,"abstract":"<p>Numerous nanomedicines have been developed to improve the efficiency and safety of conventional anticancer drugs. However, the carrier materials and intricate nature of multifunctional design always hindered the clinical transformation of nanomedicines. Herein, a novel carrier-free anticancer nanomedicine (CFDC) with tailored morphologies including nanodots, nanorod and nanosheet were prepared using the clinically approved anti-alcoholism drug disulfiram (DSF) <i>via</i> supramolecular assembly process. Our study reveals that CFDC induces the production of reactive oxygen species and activates the downstream apoptosis-related c-Jun N-terminal kinase (JNK) and p-38 pathway. In addition, the CFDC effectively counteract the inhibitory effect of NF-κB expression on ROS-induced cellular cytotoxicity, ultimately resulting in enhanced cell apoptosis, which is not achievable by pure DSF and the simply mixing of DSF and Cu<sup>2+</sup> (DSF+Cu). Notably, the CFDC exhibits 3.1-, 3.0-folds increased on cancer cell DNA damage compared with the DSF, and DSF+Cu groups. In vivo experiments conducted on breast- or prostate-bearing mice modals demonstrated that the CFDC exhibits a higher efficacy in suppressing the tumor growth. The remarkable drug delivery efficiency and better anticancer effect of CFDC nanodrug provide promising prospects for the clinical transformation of DSF based nanodrug in cancer therapy.</p>","PeriodicalId":54339,"journal":{"name":"ChemNanoMat","volume":"10 8","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemNanoMat","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnma.202400139","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Numerous nanomedicines have been developed to improve the efficiency and safety of conventional anticancer drugs. However, the carrier materials and intricate nature of multifunctional design always hindered the clinical transformation of nanomedicines. Herein, a novel carrier-free anticancer nanomedicine (CFDC) with tailored morphologies including nanodots, nanorod and nanosheet were prepared using the clinically approved anti-alcoholism drug disulfiram (DSF) via supramolecular assembly process. Our study reveals that CFDC induces the production of reactive oxygen species and activates the downstream apoptosis-related c-Jun N-terminal kinase (JNK) and p-38 pathway. In addition, the CFDC effectively counteract the inhibitory effect of NF-κB expression on ROS-induced cellular cytotoxicity, ultimately resulting in enhanced cell apoptosis, which is not achievable by pure DSF and the simply mixing of DSF and Cu2+ (DSF+Cu). Notably, the CFDC exhibits 3.1-, 3.0-folds increased on cancer cell DNA damage compared with the DSF, and DSF+Cu groups. In vivo experiments conducted on breast- or prostate-bearing mice modals demonstrated that the CFDC exhibits a higher efficacy in suppressing the tumor growth. The remarkable drug delivery efficiency and better anticancer effect of CFDC nanodrug provide promising prospects for the clinical transformation of DSF based nanodrug in cancer therapy.
ChemNanoMatEnergy-Energy Engineering and Power Technology
CiteScore
6.10
自引率
2.60%
发文量
236
期刊介绍:
ChemNanoMat is a new journal published in close cooperation with the teams of Angewandte Chemie and Advanced Materials, and is the new sister journal to Chemistry—An Asian Journal.