Turtle-like Geometry Learning: How Humans and Machines Differ in Learning Turtle Geometry

Sina Rismanchian, Shayan Doroudi, Yasaman Razeghi
{"title":"Turtle-like Geometry Learning: How Humans and Machines Differ in Learning Turtle Geometry","authors":"Sina Rismanchian, Shayan Doroudi, Yasaman Razeghi","doi":"10.1609/aaaiss.v3i1.31286","DOIUrl":null,"url":null,"abstract":"While object recognition is one of the prevalent affordances of humans' perceptual systems, even human infants can prioritize a place system over the object recognition system, that is used when navigating. This ability, combined with active learning strategies can make humans fast learners of Turtle Geometry, a notion introduced about four decades ago. We contrast humans' performances and learning strategies with large visual language models (LVLMs) and as we show, LVLMs fall short of humans in solving Turtle Geometry tasks. We outline different characteristics of human-like learning in the domain of Turtle Geometry that are fundamentally unparalleled in state-of-the-art deep neural networks and can inform future research directions in the field of artificial intelligence.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"17 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

While object recognition is one of the prevalent affordances of humans' perceptual systems, even human infants can prioritize a place system over the object recognition system, that is used when navigating. This ability, combined with active learning strategies can make humans fast learners of Turtle Geometry, a notion introduced about four decades ago. We contrast humans' performances and learning strategies with large visual language models (LVLMs) and as we show, LVLMs fall short of humans in solving Turtle Geometry tasks. We outline different characteristics of human-like learning in the domain of Turtle Geometry that are fundamentally unparalleled in state-of-the-art deep neural networks and can inform future research directions in the field of artificial intelligence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海龟式几何学习:人类和机器在学习海龟几何时有何不同
虽然物体识别是人类感知系统的主要能力之一,但即使是人类婴儿也能在导航时优先使用位置系统,而不是物体识别系统。这种能力与积极的学习策略相结合,可以使人类快速学习《海龟几何》(Turtle Geometry),这是大约四十年前提出的概念。我们将人类的表现和学习策略与大型视觉语言模型(LVLMs)进行了对比,结果表明,LVLMs 在解决《海龟几何》任务方面不及人类。我们概述了海龟几何领域中类似人类学习的不同特点,这些特点是最先进的深度神经网络所无法比拟的,可以为人工智能领域的未来研究方向提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1