Causality for Trustworthy Artificial Intelligence: Status, Challenges and Perspectives

IF 23.8 1区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS ACM Computing Surveys Pub Date : 2024-05-20 DOI:10.1145/3665494
A. Rawal, Adrienne Raglin, Danda B. Rawat, Brian M. Sadler, J. McCoy
{"title":"Causality for Trustworthy Artificial Intelligence: Status, Challenges and Perspectives","authors":"A. Rawal, Adrienne Raglin, Danda B. Rawat, Brian M. Sadler, J. McCoy","doi":"10.1145/3665494","DOIUrl":null,"url":null,"abstract":"Causal inference is the idea of cause-and-effect; this fundamental area of sciences can be applied to problem space associated with Newton’s laws or the devastating COVID-19 pandemic. The cause explains the “why” whereas the effect describes the “what”. The domain itself encompasses a plethora of disciplines from statistics and computer science to economics and philosophy. Recent advancements in machine learning (ML) and artificial intelligence (AI) systems, have nourished a renewed interest in identifying and estimating the cause-and-effect relationship from the substantial amount of available observational data. This has resulted in various new studies aimed at providing novel methods for identifying and estimating causal inference. We include a detailed taxonomy of causal inference frameworks, methods, and evaluation. An overview of causality for security is also provided. Open challenges are detailed, and approaches for evaluating the robustness of causal inference methods are described. This paper aims to provide a comprehensive survey on such studies of causality. We provide an in-depth review of causality frameworks, and describe the different methods.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":null,"pages":null},"PeriodicalIF":23.8000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665494","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Causal inference is the idea of cause-and-effect; this fundamental area of sciences can be applied to problem space associated with Newton’s laws or the devastating COVID-19 pandemic. The cause explains the “why” whereas the effect describes the “what”. The domain itself encompasses a plethora of disciplines from statistics and computer science to economics and philosophy. Recent advancements in machine learning (ML) and artificial intelligence (AI) systems, have nourished a renewed interest in identifying and estimating the cause-and-effect relationship from the substantial amount of available observational data. This has resulted in various new studies aimed at providing novel methods for identifying and estimating causal inference. We include a detailed taxonomy of causal inference frameworks, methods, and evaluation. An overview of causality for security is also provided. Open challenges are detailed, and approaches for evaluating the robustness of causal inference methods are described. This paper aims to provide a comprehensive survey on such studies of causality. We provide an in-depth review of causality frameworks, and describe the different methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可信人工智能的因果关系:现状、挑战和前景
因果推理是因果关系的概念;这一基本科学领域可应用于与牛顿定律或具有破坏性的 COVID-19 大流行病相关的问题空间。因解释了 "为什么",而果则描述了 "是什么"。这一领域本身涵盖了从统计学、计算机科学到经济学和哲学等众多学科。近来,机器学习(ML)和人工智能(AI)系统的进步再次激发了人们对从大量可用观测数据中识别和估算因果关系的兴趣。这导致了各种新的研究,旨在为因果推理的识别和估算提供新的方法。我们对因果推理框架、方法和评估进行了详细分类。我们还提供了安全因果关系概述。本文详细介绍了尚未解决的挑战,并描述了评估因果推理方法稳健性的方法。本文旨在对此类因果关系研究进行全面调查。我们深入回顾了因果关系框架,并介绍了不同的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Computing Surveys
ACM Computing Surveys 工程技术-计算机:理论方法
CiteScore
33.20
自引率
0.60%
发文量
372
审稿时长
12 months
期刊介绍: ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods. ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.
期刊最新文献
Security and Privacy on Generative Data in AIGC: A Survey Open-Ethical AI: Advancements in Open-Source Human-Centric Neural Language Models Fog Computing Technology Research: A Retrospective Overview and Bibliometric Analysis Evaluation Methodologies in Software Protection Research Gender Bias in Natural Language Processing and Computer Vision: A Comparative Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1