Human-Like Learning of Social Reasoning via Analogy

Irina Rabkina
{"title":"Human-Like Learning of Social Reasoning via Analogy","authors":"Irina Rabkina","doi":"10.1609/aaaiss.v3i1.31284","DOIUrl":null,"url":null,"abstract":"Neurotypical adult humans are impeccably good social reasoners. Despite the occasional faux pas, we know how to interact in most social settings and how to consider others' points of view. Young children, on the other hand, do not. Social reasoning, like many of our most important skills, is learned. \n\nMuch like human children, AI agents are not good social reasoners. While some algorithms can perform some aspects of social reasoning, we are a ways off from AI that can interact naturally and appropriately in the broad range of settings that people can. In this talk, I will argue that learning social reasoning via the same processes used by people will help AI agents reason--and interact--more like people do. Specifically, I will argue that children learn social reasoning via analogy, and that AI agents should, too. I will present evidence from cognitive modeling experiments demonstrating the former and AI experiments demonstrating the latter. I will also propose future directions for social reasoning research that both demonstrate the need for robust, human-like social reasoning in AI and test the utility of common approaches.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"10 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Neurotypical adult humans are impeccably good social reasoners. Despite the occasional faux pas, we know how to interact in most social settings and how to consider others' points of view. Young children, on the other hand, do not. Social reasoning, like many of our most important skills, is learned. Much like human children, AI agents are not good social reasoners. While some algorithms can perform some aspects of social reasoning, we are a ways off from AI that can interact naturally and appropriately in the broad range of settings that people can. In this talk, I will argue that learning social reasoning via the same processes used by people will help AI agents reason--and interact--more like people do. Specifically, I will argue that children learn social reasoning via analogy, and that AI agents should, too. I will present evidence from cognitive modeling experiments demonstrating the former and AI experiments demonstrating the latter. I will also propose future directions for social reasoning research that both demonstrate the need for robust, human-like social reasoning in AI and test the utility of common approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过类比进行类人社会推理学习
神经正常的成年人是无可挑剔的社交推理高手。尽管偶尔也会犯错,但我们知道如何在大多数社交场合进行互动,知道如何考虑他人的观点。而幼儿则不然。社交推理和我们许多最重要的技能一样,都是后天学习的。与人类儿童一样,人工智能代理也不擅长社交推理。虽然有些算法可以进行某些方面的社会推理,但我们距离人工智能能够像人类一样在广泛的环境中自然、恰当地进行互动还有一段距离。在本讲座中,我将论证,通过与人类相同的过程学习社会推理,将有助于人工智能代理更像人类那样进行推理和互动。具体来说,我将论证儿童通过类比学习社会推理,人工智能代理也应该如此。我将从认知建模实验和人工智能实验中提出证据,证明前者和后者。我还将提出社会推理研究的未来方向,既证明人工智能需要强大的、类似人类的社会推理,又测试常用方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1