Personalized Image Generation Through Swiping

Yuto Nakashima
{"title":"Personalized Image Generation Through Swiping","authors":"Yuto Nakashima","doi":"10.1609/aaaiss.v3i1.31238","DOIUrl":null,"url":null,"abstract":"Generating preferred images from GANs is a challenging task due to the high-dimensional nature of latent space. In this study, we propose a novel approach that uses simple user-swipe interactions to generate preferred images from users. To effectively explore the latent space with only swipe interactions, we apply principal component analysis to the latent space of StyleGAN, creating meaningful subspaces. Additionally, we use a multi-armed bandit algorithm to decide which dimensions to explore, focusing on the user's preferences. Our experiments show that our method is more efficient in generating preferred images than the baseline.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"7 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Generating preferred images from GANs is a challenging task due to the high-dimensional nature of latent space. In this study, we propose a novel approach that uses simple user-swipe interactions to generate preferred images from users. To effectively explore the latent space with only swipe interactions, we apply principal component analysis to the latent space of StyleGAN, creating meaningful subspaces. Additionally, we use a multi-armed bandit algorithm to decide which dimensions to explore, focusing on the user's preferences. Our experiments show that our method is more efficient in generating preferred images than the baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过轻扫生成个性化图像
由于潜在空间的高维特性,从 GAN 生成首选图像是一项具有挑战性的任务。在本研究中,我们提出了一种新方法,利用简单的用户滑动交互从用户生成首选图片。为了有效地利用刷卡交互探索潜在空间,我们对 StyleGAN 的潜在空间进行了主成分分析,从而创建了有意义的子空间。此外,我们还使用多臂匪徒算法来决定探索哪些维度,重点关注用户的偏好。实验表明,我们的方法在生成首选图片方面比基线方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1