{"title":"Effects of multi-axial compression and double-step aging on the microstructure and mechanical properties of Al alloy 7075","authors":"Aditya Prakash Yadav, A. K. Padap","doi":"10.1177/09544089241253671","DOIUrl":null,"url":null,"abstract":"This study investigates the combined effect of severe plastic deformation via multi-axial compression (MAC) and subsequent double-step aging on the microstructure and mechanical properties of annealed 7075 Al alloy. Three distinct processes were employed: (1) double-step aging on the annealed sample, (2) double-step aging on the six-MAC pass processed sample, and (3) double-step aging without solutionization on the six-MAC pass sample. Process (2) yielded the most significant improvements in mechanical properties. Compared to the annealed sample, the six-MAC pass, double-step aged sample exhibited an average ultimate tensile strength increase of 134% and an average Vickers micro-hardness (HV) increase of 209%. This superior performance is likely attributable to the synergistic effect of grain refinement induced by MAC and precipitate hardening achieved through double-step aging. A comprehensive analysis of microstructure evolution, mechanical properties, fractography, and the relationship between them was conducted for all three processes. This in-depth examination provided valuable insights into the mechanisms governing the observed property enhancements, particularly in process (2). Additionally, a variety of characterization techniques were employed to comprehensively evaluate the material's mechanical and microstructural characteristics.","PeriodicalId":506108,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"66 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09544089241253671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the combined effect of severe plastic deformation via multi-axial compression (MAC) and subsequent double-step aging on the microstructure and mechanical properties of annealed 7075 Al alloy. Three distinct processes were employed: (1) double-step aging on the annealed sample, (2) double-step aging on the six-MAC pass processed sample, and (3) double-step aging without solutionization on the six-MAC pass sample. Process (2) yielded the most significant improvements in mechanical properties. Compared to the annealed sample, the six-MAC pass, double-step aged sample exhibited an average ultimate tensile strength increase of 134% and an average Vickers micro-hardness (HV) increase of 209%. This superior performance is likely attributable to the synergistic effect of grain refinement induced by MAC and precipitate hardening achieved through double-step aging. A comprehensive analysis of microstructure evolution, mechanical properties, fractography, and the relationship between them was conducted for all three processes. This in-depth examination provided valuable insights into the mechanisms governing the observed property enhancements, particularly in process (2). Additionally, a variety of characterization techniques were employed to comprehensively evaluate the material's mechanical and microstructural characteristics.