{"title":"Exploring the Gap: The Challenge of Achieving Human-like Generalization for Concept-based Translation Instruction Using Large Language Models","authors":"Ming Qian, Chuiqing Kong","doi":"10.1609/aaaiss.v3i1.31283","DOIUrl":null,"url":null,"abstract":"Our study utilizes concept description instructions and few-shot learning examples to examine the effectiveness of a large language model (GPT-4) in generating Chinese-to-English translations that embody related translation concepts. We discovered that human language experts possess superior abductive reasoning skills compared to GPT-4. Therefore, it is crucial for humans to employ abductive reasoning to craft more detailed instructions and infuse additional logic into exemplary prompts, a step essential for guiding a large language model effectively, in contrast to the more intuitive understanding a human expert might have. This approach would make the prompt engineering process more complicated and less human-like. Emphasizing domain-specific abductive reasoning stands out as a crucial aspect of human-like learning that AI/ML systems based on large language models should aim to replicate.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"61 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Our study utilizes concept description instructions and few-shot learning examples to examine the effectiveness of a large language model (GPT-4) in generating Chinese-to-English translations that embody related translation concepts. We discovered that human language experts possess superior abductive reasoning skills compared to GPT-4. Therefore, it is crucial for humans to employ abductive reasoning to craft more detailed instructions and infuse additional logic into exemplary prompts, a step essential for guiding a large language model effectively, in contrast to the more intuitive understanding a human expert might have. This approach would make the prompt engineering process more complicated and less human-like. Emphasizing domain-specific abductive reasoning stands out as a crucial aspect of human-like learning that AI/ML systems based on large language models should aim to replicate.