A Framework for Rapidly Predicting the Dynamics of Flexible Solar Arrays in the China Space Station with a Verification Based on On-Orbit Measurement Data
Song Wu, Han Yan, Yuzhen Zhao, Yanhao Chen, Guoan Tang
{"title":"A Framework for Rapidly Predicting the Dynamics of Flexible Solar Arrays in the China Space Station with a Verification Based on On-Orbit Measurement Data","authors":"Song Wu, Han Yan, Yuzhen Zhao, Yanhao Chen, Guoan Tang","doi":"10.3390/aerospace11050411","DOIUrl":null,"url":null,"abstract":"The Chinese space station is a complex structure with large flexible appendages. Obtaining the on-orbit response characteristics of such a structure under different working conditions is a traditional and classic challenge in the field of dynamics. To address the on-orbit dynamics of the China Space Station, the basic equations for dynamic reduction, assembly and data recovery of linear and nonlinear substructures are derived based on the reduction and recovery theory, and a fast coupling analysis framework for flexible systems with nonlinear attachments is formed. This coupling analysis framework is adopted to quickly acquire the dynamic response of the China Space Station during in-orbit operation, thereby guiding the design. Taking SZ-15 radial docking to the Chinese Space Station as the object, the substructure of six nonlinear flexible arrays is reduced, the full flexible dynamic equation of the space station is assembled, and the response of each part of the flexible wing during the docking process is analyzed and recovered. By designing a reasonable and reliable flexible wing test scheme in-orbit, the acceleration at the root and top of the flexible wing during the docking of SZ-15 is obtained. The measured data in-orbit show that the acceleration analysis results of the typical parts of the flexible wing have a good agreement, which verifies the correctness of the fast coupling analysis framework of the flexible system. Hence, the dynamic coupling characteristics analysis of the main structure of the space station and the flexible wing based on this method can better guide the rationality of the design of the dynamic characteristics of the Chinese Space Station.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/aerospace11050411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
The Chinese space station is a complex structure with large flexible appendages. Obtaining the on-orbit response characteristics of such a structure under different working conditions is a traditional and classic challenge in the field of dynamics. To address the on-orbit dynamics of the China Space Station, the basic equations for dynamic reduction, assembly and data recovery of linear and nonlinear substructures are derived based on the reduction and recovery theory, and a fast coupling analysis framework for flexible systems with nonlinear attachments is formed. This coupling analysis framework is adopted to quickly acquire the dynamic response of the China Space Station during in-orbit operation, thereby guiding the design. Taking SZ-15 radial docking to the Chinese Space Station as the object, the substructure of six nonlinear flexible arrays is reduced, the full flexible dynamic equation of the space station is assembled, and the response of each part of the flexible wing during the docking process is analyzed and recovered. By designing a reasonable and reliable flexible wing test scheme in-orbit, the acceleration at the root and top of the flexible wing during the docking of SZ-15 is obtained. The measured data in-orbit show that the acceleration analysis results of the typical parts of the flexible wing have a good agreement, which verifies the correctness of the fast coupling analysis framework of the flexible system. Hence, the dynamic coupling characteristics analysis of the main structure of the space station and the flexible wing based on this method can better guide the rationality of the design of the dynamic characteristics of the Chinese Space Station.