A Framework for Enhancing Behavioral Science Research with Human-Guided Language Models

J. Scheuerman, Dina M. Acklin
{"title":"A Framework for Enhancing Behavioral Science Research with Human-Guided Language Models","authors":"J. Scheuerman, Dina M. Acklin","doi":"10.1609/aaaiss.v3i1.31206","DOIUrl":null,"url":null,"abstract":"Many behavioral science studies result in large amounts of unstructured data sets that are costly to code and analyze, requiring multiple reviewers to agree on systematically chosen concepts and themes to categorize responses. Large language models (LLMs) have potential to support this work, demonstrating capabilities for categorizing, summarizing, and otherwise organizing unstructured data. In this paper, we consider that although LLMs have the potential to save time and resources performing coding on qualitative data, the implications for behavioral science research are not yet well understood. Model bias and inaccuracies, reliability, and lack of domain knowledge all necessitate continued human guidance. New methods and interfaces must be developed to enable behavioral science researchers to efficiently and systematically categorize unstructured data together with LLMs. We propose a framework for incorporating human feedback into an annotation workflow, leveraging interactive machine learning to provide oversight while improving a language model's predictions over time.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"90 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many behavioral science studies result in large amounts of unstructured data sets that are costly to code and analyze, requiring multiple reviewers to agree on systematically chosen concepts and themes to categorize responses. Large language models (LLMs) have potential to support this work, demonstrating capabilities for categorizing, summarizing, and otherwise organizing unstructured data. In this paper, we consider that although LLMs have the potential to save time and resources performing coding on qualitative data, the implications for behavioral science research are not yet well understood. Model bias and inaccuracies, reliability, and lack of domain knowledge all necessitate continued human guidance. New methods and interfaces must be developed to enable behavioral science researchers to efficiently and systematically categorize unstructured data together with LLMs. We propose a framework for incorporating human feedback into an annotation workflow, leveraging interactive machine learning to provide oversight while improving a language model's predictions over time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用人导语言模型加强行为科学研究的框架
许多行为科学研究都会产生大量的非结构化数据集,这些数据集的编码和分析成本很高,需要多名审稿人就系统选择的概念和主题达成一致,以便对回答进行分类。大型语言模型(LLM)具有支持这项工作的潜力,它展示了对非结构化数据进行分类、总结和组织的能力。在本文中,我们认为虽然大型语言模型有可能节省对定性数据进行编码的时间和资源,但其对行为科学研究的影响还没有得到很好的理解。模型的偏差和不准确性、可靠性以及领域知识的缺乏都需要人类的持续指导。必须开发新的方法和界面,使行为科学研究人员能够高效、系统地将非结构化数据与 LLM 一起进行分类。我们提出了一个将人类反馈纳入注释工作流程的框架,利用交互式机器学习提供监督,同时随着时间的推移改进语言模型的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1