Reconciling Privacy and Byzantine-robustness in Federated Learning

Lun Wang
{"title":"Reconciling Privacy and Byzantine-robustness in Federated Learning","authors":"Lun Wang","doi":"10.1609/aaaiss.v3i1.31229","DOIUrl":null,"url":null,"abstract":"In this talk, we will discuss how to make federated learning\nsecure for the server and private for the clients simultaneously.\nMost prior efforts fall into either of the two categories.\nAt one end of the spectrum, some work uses techniques\nlike secure aggregation to hide the individual client’s\nupdates and only reveal the aggregated global update to a\nmalicious server that strives to infer the clients’ privacy from\ntheir updates. At the other end of the spectrum, some work\nuses Byzantine-robust FL protocols to suppress the influence\nof malicious clients’ updates. We present a protocol that offers\nbidirectional defense to simultaneously combat against\nthe malicious centralized server and Byzantine malicious\nclients. Our protocol also improves the dimension dependence\nand achieve a near-optimal statistical rate for strongly\nconvex cases.","PeriodicalId":516827,"journal":{"name":"Proceedings of the AAAI Symposium Series","volume":"60 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI Symposium Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/aaaiss.v3i1.31229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this talk, we will discuss how to make federated learning secure for the server and private for the clients simultaneously. Most prior efforts fall into either of the two categories. At one end of the spectrum, some work uses techniques like secure aggregation to hide the individual client’s updates and only reveal the aggregated global update to a malicious server that strives to infer the clients’ privacy from their updates. At the other end of the spectrum, some work uses Byzantine-robust FL protocols to suppress the influence of malicious clients’ updates. We present a protocol that offers bidirectional defense to simultaneously combat against the malicious centralized server and Byzantine malicious clients. Our protocol also improves the dimension dependence and achieve a near-optimal statistical rate for strongly convex cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
协调联合学习中的隐私和拜占庭稳健性
在本讲座中,我们将讨论如何同时保证联合学习对服务器的安全性和对客户端的私密性。在光谱的一端,一些工作使用安全聚合等技术来隐藏单个客户端的更新,只向恶意服务器披露聚合的全局更新,而恶意服务器则试图从客户端的更新中推断出客户端的隐私。在另一端,一些研究利用拜占庭稳健 FL 协议来抑制恶意客户端更新的影响。我们提出的协议提供双向防御,可同时对抗恶意集中服务器和拜占庭恶意客户端。我们的协议还改善了维度依赖性,并在强凸情况下实现了接近最优的统计率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modes of Tracking Mal-Info in Social Media with AI/ML Tools to Help Mitigate Harmful GenAI for Improved Societal Well Being Embodying Human-Like Modes of Balance Control Through Human-In-the-Loop Dyadic Learning Constructing Deep Concepts through Shallow Search Implications of Identity in AI: Creators, Creations, and Consequences ASMR: Aggregated Semantic Matching Retrieval Unleashing Commonsense Ability of LLM through Open-Ended Question Answering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1