Julia Albuquerque-Pinna, Adriana M. Jeckel, Daniel Y. M. Nakamura, Paulo Sérgio Bernarde, Sophie Kocheff, Ralph A. Saporito, Taran Grant
{"title":"Defensive alkaloid variation and palatability in sympatric poison frogs","authors":"Julia Albuquerque-Pinna, Adriana M. Jeckel, Daniel Y. M. Nakamura, Paulo Sérgio Bernarde, Sophie Kocheff, Ralph A. Saporito, Taran Grant","doi":"10.1007/s00049-024-00402-9","DOIUrl":null,"url":null,"abstract":"<div><p>Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composition varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration) and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed to the same arthropod prey and predators. We used gas chromatography–mass spectrometry to identify alkaloids from 36 individuals of six species and three genera of dendrobatid poison frogs (<i>Adelphobates, Ameerega</i>, and <i>Ranitomeya</i>) collected in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to identify specific intrinsic causes and predator responses.</p></div>","PeriodicalId":515,"journal":{"name":"Chemoecology","volume":"34 2","pages":"83 - 94"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemoecology","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s00049-024-00402-9","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical defense in poison frogs derives from lipophilic alkaloids sequestered from dietary arthropods. Alkaloid composition varies extensively among individuals, populations, and species. Numerous causes of intraspecific variation have been identified, but the causes of interspecific variation are less clear, with both intrinsic (e.g., mechanism of sequestration) and extrinsic (e.g., arthropod availability) explanations being possible. Sympatric species afford a unique opportunity to investigate the causes and consequences of interspecific variation in natural populations, since they are potentially exposed to the same arthropod prey and predators. We used gas chromatography–mass spectrometry to identify alkaloids from 36 individuals of six species and three genera of dendrobatid poison frogs (Adelphobates, Ameerega, and Ranitomeya) collected in three Amazonian localities. We then compared alkaloid composition, richness, and quantity among sympatric species and analyzed the variation in alkaloid composition among con- and heterospecific populations at the two nearest localities. We also performed arthropod palatability experiments to investigate the biological significance of differences in alkaloids among sympatric species. Sympatric species differed in alkaloid composition, richness, and quantity, and conspecific individuals from different localities shared more alkaloids than heterospecific individuals from the same locality, strongly suggesting that variation is due to intrinsic causes. All analyzed alkaloid secretions were unpalatable, but palatability scores did not differ for most sympatric species, despite significant differences in alkaloid composition, richness, and quantity. Our results provide insights into the causes and consequences of interspecific variation in alkaloid profiles, but additional data are required to identify specific intrinsic causes and predator responses.
期刊介绍:
It is the aim of Chemoecology to promote and stimulate basic science in the field of chemical ecology by publishing research papers that integrate evolution and/or ecology and chemistry in an attempt to increase our understanding of the biological significance of natural products. Its scopes cover the evolutionary biology, mechanisms and chemistry of biotic interactions and the evolution and synthesis of the underlying natural products. Manuscripts on the evolution and ecology of trophic relationships, intra- and interspecific communication, competition, and other kinds of chemical communication in all types of organismic interactions will be considered suitable for publication. Ecological studies of trophic interactions will be considered also if they are based on the information of the transmission of natural products (e.g. fatty acids) through the food-chain. Chemoecology further publishes papers that relate to the evolution and ecology of interactions mediated by non-volatile compounds (e.g. adhesive secretions). Mechanistic approaches may include the identification, biosynthesis and metabolism of substances that carry information and the elucidation of receptor- and transduction systems using physiological, biochemical and molecular techniques. Papers describing the structure and functional morphology of organs involved in chemical communication will also be considered.