Imaging of pain using positron emission tomography

iRadiology Pub Date : 2024-05-18 DOI:10.1002/ird3.73
Yu-Peng Zhou, Lauren L. Zhang, Yang Sun, Pedro Brugarolas
{"title":"Imaging of pain using positron emission tomography","authors":"Yu-Peng Zhou,&nbsp;Lauren L. Zhang,&nbsp;Yang Sun,&nbsp;Pedro Brugarolas","doi":"10.1002/ird3.73","DOIUrl":null,"url":null,"abstract":"<p>Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. Consequently, the information obtained using PET often combined with magnetic resonance imaging or computed tomography can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow, to receptor-specific tracers such as ion channels and neurotransmitters. For each tracer, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational, and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.</p>","PeriodicalId":73508,"journal":{"name":"iRadiology","volume":"2 3","pages":"339-361"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird3.73","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"iRadiology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird3.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Positron emission tomography (PET) is a noninvasive molecular imaging technique that utilizes biologically active radiolabeled compounds to image biochemical processes. As such, PET can provide important pathophysiological information associated with pain of different etiologies. Consequently, the information obtained using PET often combined with magnetic resonance imaging or computed tomography can provide useful information for diagnosing and monitoring changes associated with pain. This review covers the most important PET tracers that have been used to image pain including tracers for fundamental biological processes such as glucose metabolism and cerebral blood flow, to receptor-specific tracers such as ion channels and neurotransmitters. For each tracer, we describe the structure and radiochemical synthesis of the tracer followed by a brief summary of the available preclinical and clinical studies. By providing a summary of the PET tracers that have been employed for PET imaging of pain, this review aims to serve as a reference for preclinical, translational, and clinical investigators interested in molecular imaging of pain. Finally, the review ends with an outlook of the needs and opportunities in this area.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用正电子发射断层扫描进行疼痛成像
正电子发射断层扫描(PET)是一种无创分子成像技术,利用生物活性放射性标记化合物对生化过程进行成像。因此,PET 可以提供与不同病因引起的疼痛相关的重要病理生理信息。因此,使用 PET 获得的信息通常与磁共振成像或计算机断层扫描相结合,可为诊断和监测与疼痛相关的变化提供有用的信息。本综述涵盖了用于疼痛成像的最重要的 PET 示踪剂,包括基本生物过程示踪剂(如葡萄糖代谢和脑血流)和受体特异性示踪剂(如离子通道和神经递质)。我们将介绍每种示踪剂的结构和放射化学合成,然后简要概述现有的临床前和临床研究。本综述概述了用于疼痛 PET 成像的 PET 示踪剂,旨在为对疼痛分子成像感兴趣的临床前、转化和临床研究人员提供参考。最后,本综述对该领域的需求和机遇进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information An unusual large mass of sclerosing angiomatoid nodular transformation Exploring the feasibility of integrating ultra-high field magnetic resonance imaging neuroimaging with multimodal artificial intelligence for clinical diagnostics Three-dimensional time of flight magnetic resonance angiography at 5.0T: Visualization of the superior cerebellar artery Ultra-high field magnetic resonance imaging in theranostics of mental disorders
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1