Self-compacting concrete with reduced formwork pressures

Jǐrí Němeček, P. Trávníček, Jan Tichý
{"title":"Self-compacting concrete with reduced formwork pressures","authors":"Jǐrí Němeček, P. Trávníček, Jan Tichý","doi":"10.14311/app.2024.47.0089","DOIUrl":null,"url":null,"abstract":"Self-compacting concrete (SCC) is normally characterized with high pressures exerted on the formwork during casting. The pressures can easily exceed bearing capacity of a regular formwork when casting a high structural member in one step. The contribution shows new ways of reducing the pressures using mineral additives based on calcinated clay minerals and clay nanoparticles whose addition together with interrupted casting process leads to a substantial reduction of the formwork pressures. Short interruptions in the casting lead to microstructural changes and flocculation, thixotropy and early strength evolution. The positive effects are studied systematically in microstructural studies performed on modified cement pastes using microscopy and viscosimetry. Rheological behavior of standard SCCs is improved towards thixotropy of the mixture by using the mineral additives. The newly developed recipes are tested on SCCs used on real construction sites. Examples of their practical utilization and on-site measurements show on up to 50 % pressure reductions in enriched SCCs compared to ordinary SCCs.","PeriodicalId":7150,"journal":{"name":"Acta Polytechnica CTU Proceedings","volume":"104 20","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Polytechnica CTU Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14311/app.2024.47.0089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-compacting concrete (SCC) is normally characterized with high pressures exerted on the formwork during casting. The pressures can easily exceed bearing capacity of a regular formwork when casting a high structural member in one step. The contribution shows new ways of reducing the pressures using mineral additives based on calcinated clay minerals and clay nanoparticles whose addition together with interrupted casting process leads to a substantial reduction of the formwork pressures. Short interruptions in the casting lead to microstructural changes and flocculation, thixotropy and early strength evolution. The positive effects are studied systematically in microstructural studies performed on modified cement pastes using microscopy and viscosimetry. Rheological behavior of standard SCCs is improved towards thixotropy of the mixture by using the mineral additives. The newly developed recipes are tested on SCCs used on real construction sites. Examples of their practical utilization and on-site measurements show on up to 50 % pressure reductions in enriched SCCs compared to ordinary SCCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降低模板压力的自密实混凝土
自密实混凝土(SCC)在浇注过程中通常会对模板施加很大的压力。在一步浇注高结构构件时,压力很容易超过普通模板的承载能力。这篇论文展示了使用基于煅烧粘土矿物和纳米粘土颗粒的矿物添加剂降低压力的新方法,这些添加剂的加入以及浇注过程的间断可大幅降低模板压力。短时间的浇注中断会导致微观结构的变化和絮凝、触变性以及早期强度的演变。通过使用显微镜和粘度模拟法对改性水泥浆进行微观结构研究,对其积极影响进行了系统研究。通过使用矿物添加剂,标准 SCC 的流变性能得到改善,使混合物具有触变性。新开发的配方在实际施工现场使用的 SCC 上进行了测试。实际应用和现场测量结果表明,与普通 SCC 相比,富集 SCC 的压力最多可降低 50%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
0.40
自引率
0.00%
发文量
0
期刊最新文献
Characteristics of fibres based on secondary raw materials and their use in concrete technology Effect of preparation process on purity of tricalcium aluminate Production of concrete pavements using mixed cements The carbonation resistance of concrete on the basis of blended binders containing milled limestone Measurement of asphalt concrete base thickness using ultrasonic pulse echo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1