Efficient Fault Tolerance Methodology in Fanet Using Aco and Ml Techniques

Pooja sri G, Nuha Fathima N, Abinaya B
{"title":"Efficient Fault Tolerance Methodology in Fanet Using Aco and Ml Techniques","authors":"Pooja sri G, Nuha Fathima N, Abinaya B","doi":"10.47392/irjaeh.2024.0165","DOIUrl":null,"url":null,"abstract":"An innovative approach is presented in this study to enhance the performance of Ant Colony Optimization (ACO), a type of Bio-Inspired Algorithm (BIA), by integrating machine learning (ML) techniques for fault prediction. The goal is to address the challenges of high end-to-end delay and susceptibility to faults in traditional ACO implementations by leveraging ML methods. Through the application of ML techniques to optimize ACO efficiency and anticipate faults using the Random Forest model, significant reductions in end-to-end delay and improvements in system survivability are achieved. Additionally, the utilization of Least Absolute Shrinkage and Selection Operator (LASSO) feature selection streamlines the optimization process and enhances overall performance. Experimental results demonstrate the superiority of the proposed ML-enhanced ACO approach, indicating its potential for real-world applications in optimization problems.","PeriodicalId":517766,"journal":{"name":"International Research Journal on Advanced Engineering Hub (IRJAEH)","volume":"112 44","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Research Journal on Advanced Engineering Hub (IRJAEH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47392/irjaeh.2024.0165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An innovative approach is presented in this study to enhance the performance of Ant Colony Optimization (ACO), a type of Bio-Inspired Algorithm (BIA), by integrating machine learning (ML) techniques for fault prediction. The goal is to address the challenges of high end-to-end delay and susceptibility to faults in traditional ACO implementations by leveraging ML methods. Through the application of ML techniques to optimize ACO efficiency and anticipate faults using the Random Forest model, significant reductions in end-to-end delay and improvements in system survivability are achieved. Additionally, the utilization of Least Absolute Shrinkage and Selection Operator (LASSO) feature selection streamlines the optimization process and enhances overall performance. Experimental results demonstrate the superiority of the proposed ML-enhanced ACO approach, indicating its potential for real-world applications in optimization problems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 Aco 和 Ml 技术的 Fanet 高效容错方法
本研究提出了一种创新方法,通过整合用于故障预测的机器学习(ML)技术来提高蚁群优化(ACO)(一种生物启发算法(BIA))的性能。其目标是利用 ML 方法解决传统 ACO 实现中端到端延迟高和易发故障的难题。通过应用 ML 技术优化 ACO 效率,并使用随机森林模型预测故障,可显著降低端到端延迟,提高系统生存能力。此外,利用最小绝对收缩和选择操作符(LASSO)特征选择简化了优化过程并提高了整体性能。实验结果证明了所提出的 ML 增强 ACO 方法的优越性,显示了其在优化问题的实际应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Load Balancing in Cloud Computing: Improving Efficiency and Performance in Real Life Applications Optimizing Renewable Energy Integration in Green Building Projects: Addressing Barriers and Enhancing Energy Performance Drone Technology in Construction Industry Addressing Workplace Harassment and Discrimination: Strategies for Creating Inclusive Environments in Construction Engineering Smart Plant Health Control System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1