E. V, Jenefa A, Thiyagu T.M, Lincy A, Antony Taurshia
{"title":"DeepGAN: Utilizing generative adversarial networks for improved deep learning","authors":"E. V, Jenefa A, Thiyagu T.M, Lincy A, Antony Taurshia","doi":"10.3233/kes-230326","DOIUrl":null,"url":null,"abstract":"In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper addresses the existing challenges in synthesizing high-quality data and harnessing the capabilities of GANs for improved deep learning outcomes. Unlike traditional approaches that heavily rely on manually engineered data augmentation techniques, our work introduces a novel framework that leverages DeepGANs to autonomously generate diverse and high-fidelity data. Our experiments encompass a diverse spectrum of datasets, including images, text, and time series data. In the context of image classification tasks, we conduct experiments on the widely recognized CIFAR-10 dataset, which consists of 50,000 image samples. Our results demonstrate the remarkable efficacy of DeepGANs in enhancing model performance across various data domains. Notably, in image classification using the CIFAR-10 dataset, our innovative approach achieves an impressive accuracy of 97.2%. This represents a substantial advancement beyond conventional CNN models, underscoring the profound impact of DeepGANs in the realm of deep learning. In summary, this research sheds light on DeepGANs as a fundamental component in the pursuit of enhanced deep learning performance. Our framework not only overcomes existing limitations but also heralds a new era of data augmentation, with generative adversarial networks leading the way. The attainment of an accuracy rate of 97.2% on CIFAR-10 serves as a compelling testament to the transformative potential of DeepGANs, solidifying their pivotal role in the future of deep learning. This promises the development of more robust, adaptive, and accurate models across a myriad of applications, marking a significant contribution to the field.","PeriodicalId":44076,"journal":{"name":"International Journal of Knowledge-Based and Intelligent Engineering Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Knowledge-Based and Intelligent Engineering Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/kes-230326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of deep learning, Generative Adversarial Networks (GANs) have emerged as a topic of significant interest for their potential to enhance model performance and enable effective data augmentation. This paper addresses the existing challenges in synthesizing high-quality data and harnessing the capabilities of GANs for improved deep learning outcomes. Unlike traditional approaches that heavily rely on manually engineered data augmentation techniques, our work introduces a novel framework that leverages DeepGANs to autonomously generate diverse and high-fidelity data. Our experiments encompass a diverse spectrum of datasets, including images, text, and time series data. In the context of image classification tasks, we conduct experiments on the widely recognized CIFAR-10 dataset, which consists of 50,000 image samples. Our results demonstrate the remarkable efficacy of DeepGANs in enhancing model performance across various data domains. Notably, in image classification using the CIFAR-10 dataset, our innovative approach achieves an impressive accuracy of 97.2%. This represents a substantial advancement beyond conventional CNN models, underscoring the profound impact of DeepGANs in the realm of deep learning. In summary, this research sheds light on DeepGANs as a fundamental component in the pursuit of enhanced deep learning performance. Our framework not only overcomes existing limitations but also heralds a new era of data augmentation, with generative adversarial networks leading the way. The attainment of an accuracy rate of 97.2% on CIFAR-10 serves as a compelling testament to the transformative potential of DeepGANs, solidifying their pivotal role in the future of deep learning. This promises the development of more robust, adaptive, and accurate models across a myriad of applications, marking a significant contribution to the field.