Hybrid intelligent system for channel allocation and packet transmission in CR-IoT networks

Daniel E. Asuquo, Uduak A. Umoh, Samuel A. Robinson, Emmanuel A. Dan, Samuel S. Udoh, K. Attai
{"title":"Hybrid intelligent system for channel allocation and packet transmission in CR-IoT networks","authors":"Daniel E. Asuquo, Uduak A. Umoh, Samuel A. Robinson, Emmanuel A. Dan, Samuel S. Udoh, K. Attai","doi":"10.3233/his-240009","DOIUrl":null,"url":null,"abstract":"The proliferation of interconnected devices is driving a surge in the demand for wireless spectrum. Meeting the need for wireless channel access for every device, while also ensuring consistent quality of service (QoS), poses significant challenges. This is particularly true for resource-limited heterogeneous devices within Internet of Things (IoT) networks. Cognitive radio (CR) technology addresses the shortcomings of traditional fixed channel allocation policies by enabling unlicensed users to opportunistically access unused spectrum belonging to licensed users. This facilitates timely and reliable transmission of mission-critical data packets. A cognitive radio-enabled IoT (CR-IoT) network is poised to better accommodate the growing demands of diverse applications and services within the smart city framework, spanning areas such as healthcare, agriculture, manufacturing, logistics, transportation, environment, public safety, and pharmaceuticals. To minimize switching delays and ensure energy and spectral efficiency, this study proposes a hybrid intelligent system for efficient channel allocation and packet transmission in CR-IoT networks. Leveraging Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS), the system dynamically manages spectrum resources to minimize handoffs while upholding QoS. A Java-based simulation integrates system outputs with interference temperature data to accommodate service demands across 2G–4G spectrums. Evaluation reveals SVM’s 98.8% accuracy in detecting spectrum holes and ANFIS’s 90.4% accuracy in channel allocation. These results demonstrate significant potential for enhancing spectrum utilization in various IoT applications.","PeriodicalId":88526,"journal":{"name":"International journal of hybrid intelligent systems","volume":" 21","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of hybrid intelligent systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/his-240009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The proliferation of interconnected devices is driving a surge in the demand for wireless spectrum. Meeting the need for wireless channel access for every device, while also ensuring consistent quality of service (QoS), poses significant challenges. This is particularly true for resource-limited heterogeneous devices within Internet of Things (IoT) networks. Cognitive radio (CR) technology addresses the shortcomings of traditional fixed channel allocation policies by enabling unlicensed users to opportunistically access unused spectrum belonging to licensed users. This facilitates timely and reliable transmission of mission-critical data packets. A cognitive radio-enabled IoT (CR-IoT) network is poised to better accommodate the growing demands of diverse applications and services within the smart city framework, spanning areas such as healthcare, agriculture, manufacturing, logistics, transportation, environment, public safety, and pharmaceuticals. To minimize switching delays and ensure energy and spectral efficiency, this study proposes a hybrid intelligent system for efficient channel allocation and packet transmission in CR-IoT networks. Leveraging Support Vector Machine (SVM) and Adaptive Neuro-Fuzzy Inference System (ANFIS), the system dynamically manages spectrum resources to minimize handoffs while upholding QoS. A Java-based simulation integrates system outputs with interference temperature data to accommodate service demands across 2G–4G spectrums. Evaluation reveals SVM’s 98.8% accuracy in detecting spectrum holes and ANFIS’s 90.4% accuracy in channel allocation. These results demonstrate significant potential for enhancing spectrum utilization in various IoT applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 CR-IoT 网络中信道分配和数据包传输的混合智能系统
互联设备的激增推动了无线频谱需求的激增。既要满足每台设备对无线信道接入的需求,又要确保一致的服务质量(QoS),这带来了巨大的挑战。这对于物联网(IoT)网络中资源有限的异构设备来说尤其如此。认知无线电(CR)技术可解决传统固定信道分配政策的缺陷,使非授权用户能够伺机访问属于授权用户的未使用频谱。这有助于及时可靠地传输关键任务数据包。认知无线电物联网(CR-IoT)网络可更好地满足智慧城市框架内各种应用和服务日益增长的需求,涵盖医疗保健、农业、制造、物流、交通、环境、公共安全和制药等领域。为了最大限度地减少切换延迟,确保能源和频谱效率,本研究提出了一种混合智能系统,用于在 CR-IoT 网络中实现高效信道分配和数据包传输。该系统利用支持向量机(SVM)和自适应神经模糊推理系统(ANFIS),动态管理频谱资源,在保证质量的同时尽量减少切换。基于 Java 的模拟将系统输出与干扰温度数据整合在一起,以满足 2G-4G 频谱的服务需求。评估显示,SVM 在检测频谱漏洞方面的准确率为 98.8%,ANFIS 在信道分配方面的准确率为 90.4%。这些结果证明了在各种物联网应用中提高频谱利用率的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
0
期刊最新文献
Vision transformer-convolution for breast cancer classification using mammography images: A comparative study Comparative temporal dynamics of individuation and perceptual averaging using a biological neural network model Metaheuristic optimized electrocardiography time-series anomaly classification with recurrent and long-short term neural networks Classifications, evaluation metrics, datasets, and domains in recommendation services: A survey A hybrid approach of machine learning algorithms for improving accuracy of social media crisis detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1