Argha Sen, Avijit Mandal, Prasenjit Karmakar, Anirban Das, Sandip Chakraborty
{"title":"Passive Monitoring of Dangerous Driving Behaviors Using mmWave Radar","authors":"Argha Sen, Avijit Mandal, Prasenjit Karmakar, Anirban Das, Sandip Chakraborty","doi":"10.1016/j.pmcj.2024.101949","DOIUrl":null,"url":null,"abstract":"<div><p>Detecting risky driving has been a significant area of focus in recent years. Nonetheless, devising a practical, effective, and unobtrusive solution remains a complex challenge. Presently available technologies predominantly rely on visual cues or physical proximity, complicating the sensing. With this incentive, we explore the possibility of utilizing mmWave radars exclusively to identify dangerous driving behaviors. Initially, we scrutinize the attributes of unsafe driving and pinpoint distinct patterns in range-doppler readings brought about by nine common risky driving manoeuvres. Subsequently, we create an innovative Fused-CNN model that identifies instances of hazardous driving amidst regular driving and categorizes nine distinct types of dangerous driving actions. After conducting thorough experiments involving seven volunteers driving in real-world settings, we note that our system accurately distinguishes risky driving actions with an average precision of approximately 97% with a deviation of <span><math><mrow><mo>±</mo><mn>2</mn><mtext>%</mtext></mrow></math></span>. To underscore the significance of our approach, we also compare it against established state-of-the-art methods.</p></div>","PeriodicalId":49005,"journal":{"name":"Pervasive and Mobile Computing","volume":"103 ","pages":"Article 101949"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pervasive and Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574119224000750","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Detecting risky driving has been a significant area of focus in recent years. Nonetheless, devising a practical, effective, and unobtrusive solution remains a complex challenge. Presently available technologies predominantly rely on visual cues or physical proximity, complicating the sensing. With this incentive, we explore the possibility of utilizing mmWave radars exclusively to identify dangerous driving behaviors. Initially, we scrutinize the attributes of unsafe driving and pinpoint distinct patterns in range-doppler readings brought about by nine common risky driving manoeuvres. Subsequently, we create an innovative Fused-CNN model that identifies instances of hazardous driving amidst regular driving and categorizes nine distinct types of dangerous driving actions. After conducting thorough experiments involving seven volunteers driving in real-world settings, we note that our system accurately distinguishes risky driving actions with an average precision of approximately 97% with a deviation of . To underscore the significance of our approach, we also compare it against established state-of-the-art methods.
期刊介绍:
As envisioned by Mark Weiser as early as 1991, pervasive computing systems and services have truly become integral parts of our daily lives. Tremendous developments in a multitude of technologies ranging from personalized and embedded smart devices (e.g., smartphones, sensors, wearables, IoTs, etc.) to ubiquitous connectivity, via a variety of wireless mobile communications and cognitive networking infrastructures, to advanced computing techniques (including edge, fog and cloud) and user-friendly middleware services and platforms have significantly contributed to the unprecedented advances in pervasive and mobile computing. Cutting-edge applications and paradigms have evolved, such as cyber-physical systems and smart environments (e.g., smart city, smart energy, smart transportation, smart healthcare, etc.) that also involve human in the loop through social interactions and participatory and/or mobile crowd sensing, for example. The goal of pervasive computing systems is to improve human experience and quality of life, without explicit awareness of the underlying communications and computing technologies.
The Pervasive and Mobile Computing Journal (PMC) is a high-impact, peer-reviewed technical journal that publishes high-quality scientific articles spanning theory and practice, and covering all aspects of pervasive and mobile computing and systems.