A statistical sensing method by utilizing Wi-Fi CSI subcarriers: Empirical study and performance enhancement

Tao Deng , Bowen Zheng , Rui Du , Fan Liu , Tony Xiao Han
{"title":"A statistical sensing method by utilizing Wi-Fi CSI subcarriers: Empirical study and performance enhancement","authors":"Tao Deng ,&nbsp;Bowen Zheng ,&nbsp;Rui Du ,&nbsp;Fan Liu ,&nbsp;Tony Xiao Han","doi":"10.1016/j.jiixd.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>In modern Wi-Fi systems, channel state information (CSI) serves as a foundational support for various sensing applications. Currently, existing CSI-based techniques exhibit limitations in terms of environmental adaptability. As such, optimizing the utilization of subcarrier CSI stands as a critical avenue for enhancing sensing performance. Within the OFDM communication framework, this work derives sensing outcomes for both detection and estimation by harnessing the CSI from every individual measured subcarrier, subsequently consolidating these outcomes. When contrasted against results derived from CSI based on specific extraction protocols or those obtained through weighted summation, the methodology introduced in this study offers substantial improvements in CSI-based detection and estimation performance. This approach not only underscores the significance but also serves as a robust exemplar for the comprehensive application of CSI.</p></div>","PeriodicalId":100790,"journal":{"name":"Journal of Information and Intelligence","volume":"2 4","pages":"Pages 365-374"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949715924000374/pdfft?md5=90504ae06b478f8e48c78218ff4dd240&pid=1-s2.0-S2949715924000374-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information and Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949715924000374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In modern Wi-Fi systems, channel state information (CSI) serves as a foundational support for various sensing applications. Currently, existing CSI-based techniques exhibit limitations in terms of environmental adaptability. As such, optimizing the utilization of subcarrier CSI stands as a critical avenue for enhancing sensing performance. Within the OFDM communication framework, this work derives sensing outcomes for both detection and estimation by harnessing the CSI from every individual measured subcarrier, subsequently consolidating these outcomes. When contrasted against results derived from CSI based on specific extraction protocols or those obtained through weighted summation, the methodology introduced in this study offers substantial improvements in CSI-based detection and estimation performance. This approach not only underscores the significance but also serves as a robust exemplar for the comprehensive application of CSI.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 Wi-Fi CSI 子载波的统计传感方法:实证研究与性能提升
在现代 Wi-Fi 系统中,信道状态信息(CSI)是各种传感应用的基础支持。目前,基于 CSI 的现有技术在环境适应性方面表现出局限性。因此,优化子载波 CSI 的利用是提高传感性能的关键途径。在 OFDM 通信框架内,这项工作通过利用每个单独测量的子载波的 CSI 来获得检测和估算的传感结果,然后将这些结果进行整合。与基于特定提取协议或通过加权求和获得的 CSI 结果相比,本研究中引入的方法大大提高了基于 CSI 的检测和估计性能。这种方法不仅凸显了 CSI 的重要意义,也为 CSI 的全面应用提供了一个强有力的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Temporal context and representative feature learning for weakly supervised video anomaly detection Learning multi-scale attention network for fine-grained visual classification Capacity enhancement in multirelay-assisted hybrid SWIPT wireless communications Prototype-wise momentum-based federated contrast learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1