Antarctic sea ice prediction with A convolutional long short-term memory network

IF 3.1 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Ocean Modelling Pub Date : 2024-05-19 DOI:10.1016/j.ocemod.2024.102386
Xiaoran Dong , Qinghua Yang , Yafei Nie , Lorenzo Zampieri , Jiuke Wang , Jiping Liu , Dake Chen
{"title":"Antarctic sea ice prediction with A convolutional long short-term memory network","authors":"Xiaoran Dong ,&nbsp;Qinghua Yang ,&nbsp;Yafei Nie ,&nbsp;Lorenzo Zampieri ,&nbsp;Jiuke Wang ,&nbsp;Jiping Liu ,&nbsp;Dake Chen","doi":"10.1016/j.ocemod.2024.102386","DOIUrl":null,"url":null,"abstract":"<div><p>Antarctic sea ice predictions are becoming increasingly important scientifically and operationally due to climate change and increased human activities in the region. Conventional numerical models typically require extensive computational resources and exhibit limited predictive skill on the subseasonal-to-seasonal scale. In this study, a convolutional long short-term memory (ConvLSTM) deep neural network is constructed to predict the 60-day future Antarctic sea ice evolution using only satellite-derived sea ice concentration (SIC) from 1989 to 2016. The network is skillful for approximately one month in predicting the daily spatial distribution of Antarctic SIC between 2018 and 2022, with the best predictive skill found in austral autumn (MAM) and winter (JJA). ConvLSTM also performs well in real-time prediction in February and September when the Antarctic sea ice extent (SIE) reaches the seasonal maximum and minimum, with the monthly mean SIE error mostly below 0.2 million km<sup>2</sup>. The results suggest substantial potential for applying machine learning techniques for skillful Antarctic sea ice prediction.</p></div>","PeriodicalId":19457,"journal":{"name":"Ocean Modelling","volume":"190 ","pages":"Article 102386"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Modelling","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1463500324000738","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Antarctic sea ice predictions are becoming increasingly important scientifically and operationally due to climate change and increased human activities in the region. Conventional numerical models typically require extensive computational resources and exhibit limited predictive skill on the subseasonal-to-seasonal scale. In this study, a convolutional long short-term memory (ConvLSTM) deep neural network is constructed to predict the 60-day future Antarctic sea ice evolution using only satellite-derived sea ice concentration (SIC) from 1989 to 2016. The network is skillful for approximately one month in predicting the daily spatial distribution of Antarctic SIC between 2018 and 2022, with the best predictive skill found in austral autumn (MAM) and winter (JJA). ConvLSTM also performs well in real-time prediction in February and September when the Antarctic sea ice extent (SIE) reaches the seasonal maximum and minimum, with the monthly mean SIE error mostly below 0.2 million km2. The results suggest substantial potential for applying machine learning techniques for skillful Antarctic sea ice prediction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用卷积长短期记忆网络进行南极海冰预测
由于气候变化和该地区人类活动的增加,南极海冰预测在科学和业务上都变得越来越重要。传统的数值模型通常需要大量的计算资源,在亚季节到季节尺度上的预测能力有限。本研究构建了一个卷积长短期记忆(ConvLSTM)深度神经网络,仅利用 1989 年至 2016 年卫星海冰浓度(SIC)预测未来 60 天南极海冰的演变。该网络在预测 2018 年至 2022 年间南极海冰日空间分布时,大约有一个月的预测能力是娴熟的,其中在澳大利亚秋季(MAM)和冬季(JJA)的预测能力最佳。在南极海冰范围(SIE)达到季节性最大值和最小值的 2 月和 9 月,ConvLSTM 的实时预测性能也很好,月平均 SIE 误差大多低于 0.2 万平方公里。这些结果表明,应用机器学习技术对南极海冰进行熟练预测具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ocean Modelling
Ocean Modelling 地学-海洋学
CiteScore
5.50
自引率
9.40%
发文量
86
审稿时长
19.6 weeks
期刊介绍: The main objective of Ocean Modelling is to provide rapid communication between those interested in ocean modelling, whether through direct observation, or through analytical, numerical or laboratory models, and including interactions between physical and biogeochemical or biological phenomena. Because of the intimate links between ocean and atmosphere, involvement of scientists interested in influences of either medium on the other is welcome. The journal has a wide scope and includes ocean-atmosphere interaction in various forms as well as pure ocean results. In addition to primary peer-reviewed papers, the journal provides review papers, preliminary communications, and discussions.
期刊最新文献
Low power computation of transoceanic wave propagation for tsunami hazard mitigation Discrete variance decay analysis of spurious mixing Global tsunami modelling on a spherical multiple-cell grid Accuracy assessment of recent global ocean tide models in coastal waters of the European North West Shelf Enhancing model temperature estimations in shallow, turbid, coastal regions: Mobile Bay, Alabama
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1