{"title":"Modeling the heterogeneous apoptotic response of caspase-mediated signaling in tumor cells","authors":"Diamond S. Mangrum , Stacey D. Finley","doi":"10.1016/j.jtbi.2024.111857","DOIUrl":null,"url":null,"abstract":"<div><p>Resisting apoptosis is a hallmark of cancer. For this reason, it may be possible to force cancer cells to die by targeting components along the apoptotic signaling pathway. However, apoptosis signaling is challenging to understand due to dynamic and complex behaviors of ligands, receptors, and intracellular signaling components in response to cancer therapy. In this work, we forecast the apoptotic response based on the combined impact of these features. We expanded a previously established mathematical model of caspase-mediated apoptosis to include extracellular activation and receptor dynamics. In addition, three potential threshold values of caspase-3 necessary for the activation of apoptosis were selected to forecast which cells become apoptotic over time. We first vary ligand and receptor levels with the number of intracellular signaling proteins remaining consistent. Then, we vary the intracellular protein molecules in each simulated tumor cell to forecast the response of a heterogeneous population. By leveraging the benefits of computational modeling, we investigate the combined effect of several factors on the onset of apoptosis. This work provides quantitative insights for how the apoptotic signaling response can be forecasted, and precisely triggered, amongst heterogeneous cells via extracellular activation.</p></div>","PeriodicalId":54763,"journal":{"name":"Journal of Theoretical Biology","volume":"590 ","pages":"Article 111857"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022519324001383/pdfft?md5=86b3428602a72bef72e546b875e4174b&pid=1-s2.0-S0022519324001383-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022519324001383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Resisting apoptosis is a hallmark of cancer. For this reason, it may be possible to force cancer cells to die by targeting components along the apoptotic signaling pathway. However, apoptosis signaling is challenging to understand due to dynamic and complex behaviors of ligands, receptors, and intracellular signaling components in response to cancer therapy. In this work, we forecast the apoptotic response based on the combined impact of these features. We expanded a previously established mathematical model of caspase-mediated apoptosis to include extracellular activation and receptor dynamics. In addition, three potential threshold values of caspase-3 necessary for the activation of apoptosis were selected to forecast which cells become apoptotic over time. We first vary ligand and receptor levels with the number of intracellular signaling proteins remaining consistent. Then, we vary the intracellular protein molecules in each simulated tumor cell to forecast the response of a heterogeneous population. By leveraging the benefits of computational modeling, we investigate the combined effect of several factors on the onset of apoptosis. This work provides quantitative insights for how the apoptotic signaling response can be forecasted, and precisely triggered, amongst heterogeneous cells via extracellular activation.
期刊介绍:
The Journal of Theoretical Biology is the leading forum for theoretical perspectives that give insight into biological processes. It covers a very wide range of topics and is of interest to biologists in many areas of research, including:
• Brain and Neuroscience
• Cancer Growth and Treatment
• Cell Biology
• Developmental Biology
• Ecology
• Evolution
• Immunology,
• Infectious and non-infectious Diseases,
• Mathematical, Computational, Biophysical and Statistical Modeling
• Microbiology, Molecular Biology, and Biochemistry
• Networks and Complex Systems
• Physiology
• Pharmacodynamics
• Animal Behavior and Game Theory
Acceptable papers are those that bear significant importance on the biology per se being presented, and not on the mathematical analysis. Papers that include some data or experimental material bearing on theory will be considered, including those that contain comparative study, statistical data analysis, mathematical proof, computer simulations, experiments, field observations, or even philosophical arguments, which are all methods to support or reject theoretical ideas. However, there should be a concerted effort to make papers intelligible to biologists in the chosen field.