{"title":"Robust fault detection and isolation for uncertain neutral time-delay systems using a geometric approach","authors":"","doi":"10.1016/j.isatra.2024.05.038","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a new geometric fault detection and isolation (FDI) strategy for uncertain neutral time-delay systems (UNTDS). Firstly, the concept of unobservability subspace is extended to the considered system. Subsequently, utilizing the geometric properties of factor space and canonical projection, the fault is divided into different unobservability subspaces. Therefore, an algorithm for constructing the subspace is developed for fault isolation. Finally, a set of observers is designed for the subsystems, and generates a set of structured residuals which is sensitive only to a specific fault. Additionally, the <span><math><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></math></span> technique is utilized to suppress the disturbances and error signals due to time-varying delays on the residual. The simulation examples verify the effectiveness of the proposed approach.</p></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"151 ","pages":"Pages 232-242"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057824002416","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposes a new geometric fault detection and isolation (FDI) strategy for uncertain neutral time-delay systems (UNTDS). Firstly, the concept of unobservability subspace is extended to the considered system. Subsequently, utilizing the geometric properties of factor space and canonical projection, the fault is divided into different unobservability subspaces. Therefore, an algorithm for constructing the subspace is developed for fault isolation. Finally, a set of observers is designed for the subsystems, and generates a set of structured residuals which is sensitive only to a specific fault. Additionally, the technique is utilized to suppress the disturbances and error signals due to time-varying delays on the residual. The simulation examples verify the effectiveness of the proposed approach.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.