{"title":"Efficient delivery of anticancer drugs using functionalized-Ag-decorated Fe3O4@SiO2 nanocarrier with folic acid and β-cyclodextrin","authors":"Yoga Romdoni , Eka Sunarwidhi Prasedya , Grandprix T.M. Kadja , Yoshitaka Kitamoto , Munawar Khalil","doi":"10.1016/j.bbagen.2024.130643","DOIUrl":null,"url":null,"abstract":"<div><p>Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub> (Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Ag) nanocarriers with folic acid (FA) and <em>β</em>-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Ag/Cys/FA and Fe<sub>3</sub>O<sub>4</sub>@SiO<sub>2</sub>-Ag/Cys/BCD exhibited maximum loading efficiency of 50–60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40–47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.</p></div>","PeriodicalId":8800,"journal":{"name":"Biochimica et biophysica acta. General subjects","volume":"1868 8","pages":"Article 130643"},"PeriodicalIF":2.8000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et biophysica acta. General subjects","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304416524000862","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocarrier surface functionalization has been widely regarded as a promising approach for achieving precise and targeted drug delivery systems. In this work, the fabrication of functionalized-Ag-decorated Fe3O4@SiO2 (Fe3O4@SiO2-Ag) nanocarriers with folic acid (FA) and β-cyclodextrin (BCD) exhibit a remarkable capacity for delivering two types of anticancer drugs, i.e., doxorubicin (DOX) and epirubicin (EPI), into cancer cells. The effective functionalization of Fe3O4@SiO2-Ag nanoparticles has been achieved through the use of cysteine (Cys) as an anchor for attaching FA and BCD via EDC-NHS coupling and Steglich esterification methods, respectively. The findings indicate that surface functionalization had no significant impact on the physicochemical characteristics of the nanoparticles. However, it notably affected DOX and EPI loading and release efficiency. The electrostatic conjugation of DOX/EPI onto the surface of Fe3O4@SiO2-Ag/Cys/FA and Fe3O4@SiO2-Ag/Cys/BCD exhibited maximum loading efficiency of 50–60% at concentration ratio of DOX/EPI to nanoparticles of 1:14. These nanocarriers also achieved an 40–47% DOX/EPI release over 36 days. Furthermore, the drug-loaded functionalized-nanocarrier showed cytotoxic effects on SK-MEL-2 cells, as demonstrated by an in vitro MTT assay. This suggests that the as-prepared functionalized-nanoparticles have promise as a carrier for the efficient anticancer drugs.
期刊介绍:
BBA General Subjects accepts for submission either original, hypothesis-driven studies or reviews covering subjects in biochemistry and biophysics that are considered to have general interest for a wide audience. Manuscripts with interdisciplinary approaches are especially encouraged.