Ana Garcia-Bernabeu , Adolfo Hilario-Caballero , Fabio Tardella , David Pla-Santamaria
{"title":"ESG integration in portfolio selection: A robust preference-based multicriteria approach","authors":"Ana Garcia-Bernabeu , Adolfo Hilario-Caballero , Fabio Tardella , David Pla-Santamaria","doi":"10.1016/j.orp.2024.100305","DOIUrl":null,"url":null,"abstract":"<div><p>We present a framework for multi-objective optimization where the classical mean–variance portfolio model is extended to integrate the environmental, social and governance (ESG) criteria on the same playing field as risk and return and, at the same time, to reflect the investors’ preferences in the optimal portfolio allocation. To obtain the three–dimensional Pareto front, we apply an efficient multi-objective genetic algorithm, which is based on the concept of <span><math><mi>ɛ</mi></math></span>-dominance. We next address the issue of how to incorporate investors’ preferences to express the relative importance of each objective through a robust weighting scheme in a multicriteria ranking framework. The new proposal has been applied to real data to find optimal portfolios of socially responsible investment funds, and the main conclusion from the empirical tests is that it is possible to provide the investors with a robust solution in the mean–variance–ESG surface according to their preferences.</p></div>","PeriodicalId":38055,"journal":{"name":"Operations Research Perspectives","volume":"12 ","pages":"Article 100305"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214716024000095/pdfft?md5=844c952d89a5e3cb430a5a472d124362&pid=1-s2.0-S2214716024000095-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Operations Research Perspectives","FirstCategoryId":"91","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214716024000095","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
We present a framework for multi-objective optimization where the classical mean–variance portfolio model is extended to integrate the environmental, social and governance (ESG) criteria on the same playing field as risk and return and, at the same time, to reflect the investors’ preferences in the optimal portfolio allocation. To obtain the three–dimensional Pareto front, we apply an efficient multi-objective genetic algorithm, which is based on the concept of -dominance. We next address the issue of how to incorporate investors’ preferences to express the relative importance of each objective through a robust weighting scheme in a multicriteria ranking framework. The new proposal has been applied to real data to find optimal portfolios of socially responsible investment funds, and the main conclusion from the empirical tests is that it is possible to provide the investors with a robust solution in the mean–variance–ESG surface according to their preferences.