{"title":"ClusterLP: A novel Cluster-aware Link Prediction model in undirected and directed graphs","authors":"Shanfan Zhang , Wenjiao Zhang , Zhan Bu , Xia Zhang","doi":"10.1016/j.ijar.2024.109216","DOIUrl":null,"url":null,"abstract":"<div><p>Link prediction models endeavor to understand the distribution of links within graphs and forecast the presence of potential links. With the advancements in deep learning, prevailing methods typically strive to acquire low-dimensional representations of nodes in networks, aiming to capture and retain the structure and inherent characteristics of networks. However, the majority of these methods primarily focus on preserving the microscopic structure, such as the first- and second-order proximities of nodes, while largely disregarding the mesoscopic cluster structure, which stands out as one of the network's most prominent features. Following the homophily principle, nodes within the same cluster exhibit greater similarity to each other compared to those from different clusters, suggesting that they should possess analogous vertex representations and higher probabilities of linkage. In this study, we develop a straightforward yet efficient <strong><em>Cluster</em></strong>-aware <strong><em>L</em></strong>ink <strong><em>P</em></strong>rediction framework (<em>ClusterLP</em>), with the objective of directly leveraging cluster structures to predict links among nodes with maximum accuracy in both undirected and directed graphs. Specifically, we posit that establishing links between nodes with similar representation vectors and cluster tendencies is more feasible in undirected graphs, whereas nodes in directed graphs are inclined to point towards nodes with akin representation vectors and greater influence. We tailor the implementation of <em>ClusterLP</em> for undirected and directed graphs, respectively, and experimental findings using multiple real-world networks demonstrate the high competitiveness of our models in the realm of link prediction tasks. The code utilized in our implementation is accessible at <span>https://github.com/ZINUX1998/ClusterLP</span><svg><path></path></svg>.</p></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"172 ","pages":"Article 109216"},"PeriodicalIF":3.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24001038","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Link prediction models endeavor to understand the distribution of links within graphs and forecast the presence of potential links. With the advancements in deep learning, prevailing methods typically strive to acquire low-dimensional representations of nodes in networks, aiming to capture and retain the structure and inherent characteristics of networks. However, the majority of these methods primarily focus on preserving the microscopic structure, such as the first- and second-order proximities of nodes, while largely disregarding the mesoscopic cluster structure, which stands out as one of the network's most prominent features. Following the homophily principle, nodes within the same cluster exhibit greater similarity to each other compared to those from different clusters, suggesting that they should possess analogous vertex representations and higher probabilities of linkage. In this study, we develop a straightforward yet efficient Cluster-aware Link Prediction framework (ClusterLP), with the objective of directly leveraging cluster structures to predict links among nodes with maximum accuracy in both undirected and directed graphs. Specifically, we posit that establishing links between nodes with similar representation vectors and cluster tendencies is more feasible in undirected graphs, whereas nodes in directed graphs are inclined to point towards nodes with akin representation vectors and greater influence. We tailor the implementation of ClusterLP for undirected and directed graphs, respectively, and experimental findings using multiple real-world networks demonstrate the high competitiveness of our models in the realm of link prediction tasks. The code utilized in our implementation is accessible at https://github.com/ZINUX1998/ClusterLP.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.