Huiting Ma , Dengao Li , Jian Fu , Guiji Zhao , Jumin Zhao
{"title":"Heart failure prognosis prediction: Let’s start with the MDL-HFP model","authors":"Huiting Ma , Dengao Li , Jian Fu , Guiji Zhao , Jumin Zhao","doi":"10.1016/j.is.2024.102408","DOIUrl":null,"url":null,"abstract":"<div><p>Heart failure, as a critical symptom or terminal stage of assorted heart diseases, is a world-class public health problem. Establishing a prognostic model can help identify high dangerous patients, save their lives promptly, and reduce medical burden. Although integrating structured indicators and unstructured text for complementary information has been proven effective in disease prediction tasks, there are still certain limitations. Firstly, the processing of single branch modes is easily overlooked, which can affect the final fusion result. Secondly, simple fusion will lose complementary information between modalities, limiting the network’s learning ability. Thirdly, incomplete interpretability can affect the practical application and development of the model. To overcome these challenges, this paper proposes the MDL-HFP multimodal model for predicting patient prognosis using the MIMIC-III public database. Firstly, the ADASYN algorithm is used to handle the imbalance of data categories. Then, the proposed improved Deep&Cross Network is used for automatic feature selection to encode structured sparse features, and implicit graph structure information is introduced to encode unstructured clinical notes based on the HR-BGCN model. Finally, the information of the two modalities is fused through a cross-modal dynamic interaction layer. By comparing multiple advanced multimodal deep learning models, the model’s effectiveness is verified, with an average F1 score of 90.42% and an average accuracy of 90.70%. The model proposed in this paper can accurately classify the readmission status of patients, thereby assisting doctors in making judgments and improving the patient’s prognosis. Further visual analysis demonstrates the usability of the model, providing a comprehensive explanation for clinical decision-making.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102408"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000668","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Heart failure, as a critical symptom or terminal stage of assorted heart diseases, is a world-class public health problem. Establishing a prognostic model can help identify high dangerous patients, save their lives promptly, and reduce medical burden. Although integrating structured indicators and unstructured text for complementary information has been proven effective in disease prediction tasks, there are still certain limitations. Firstly, the processing of single branch modes is easily overlooked, which can affect the final fusion result. Secondly, simple fusion will lose complementary information between modalities, limiting the network’s learning ability. Thirdly, incomplete interpretability can affect the practical application and development of the model. To overcome these challenges, this paper proposes the MDL-HFP multimodal model for predicting patient prognosis using the MIMIC-III public database. Firstly, the ADASYN algorithm is used to handle the imbalance of data categories. Then, the proposed improved Deep&Cross Network is used for automatic feature selection to encode structured sparse features, and implicit graph structure information is introduced to encode unstructured clinical notes based on the HR-BGCN model. Finally, the information of the two modalities is fused through a cross-modal dynamic interaction layer. By comparing multiple advanced multimodal deep learning models, the model’s effectiveness is verified, with an average F1 score of 90.42% and an average accuracy of 90.70%. The model proposed in this paper can accurately classify the readmission status of patients, thereby assisting doctors in making judgments and improving the patient’s prognosis. Further visual analysis demonstrates the usability of the model, providing a comprehensive explanation for clinical decision-making.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.