Giovanni Di Gennaro , Claudia Greco , Amedeo Buonanno , Marialucia Cuciniello , Terry Amorese , Maria Santina Ler , Gennaro Cordasco , Francesco A.N. Palmieri , Anna Esposito
{"title":"HUM-CARD: A human crowded annotated real dataset","authors":"Giovanni Di Gennaro , Claudia Greco , Amedeo Buonanno , Marialucia Cuciniello , Terry Amorese , Maria Santina Ler , Gennaro Cordasco , Francesco A.N. Palmieri , Anna Esposito","doi":"10.1016/j.is.2024.102409","DOIUrl":null,"url":null,"abstract":"<div><p>The growth of data-driven approaches typical of Machine Learning leads to an ever-increasing need for large quantities of labeled data. Unfortunately, these attributions are often made automatically and/or crudely, thus destroying the very concept of “ground truth” they are supposed to represent. To address this problem, we introduce HUM-CARD, a dataset of human trajectories in crowded contexts manually annotated by nine experts in engineering and psychology, totaling approximately <span><math><mrow><mn>5000</mn></mrow></math></span> hours. Our multidisciplinary labeling process has enabled the creation of a well-structured ontology, accounting for both individual and contextual factors influencing human movement dynamics in shared environments. Preliminary and descriptive analyzes are presented, highlighting the potential benefits of this dataset and its methodology in various research challenges.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"124 ","pages":"Article 102409"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S030643792400067X/pdfft?md5=e81bccaabf431209b490556bb4e67c4b&pid=1-s2.0-S030643792400067X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030643792400067X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of data-driven approaches typical of Machine Learning leads to an ever-increasing need for large quantities of labeled data. Unfortunately, these attributions are often made automatically and/or crudely, thus destroying the very concept of “ground truth” they are supposed to represent. To address this problem, we introduce HUM-CARD, a dataset of human trajectories in crowded contexts manually annotated by nine experts in engineering and psychology, totaling approximately hours. Our multidisciplinary labeling process has enabled the creation of a well-structured ontology, accounting for both individual and contextual factors influencing human movement dynamics in shared environments. Preliminary and descriptive analyzes are presented, highlighting the potential benefits of this dataset and its methodology in various research challenges.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.