Boosting domain-specific models with shrinkage: An application in mortality forecasting

IF 6.9 2区 经济学 Q1 ECONOMICS International Journal of Forecasting Pub Date : 2024-05-20 DOI:10.1016/j.ijforecast.2024.05.001
Li Li , Han Li , Anastasios Panagiotelis
{"title":"Boosting domain-specific models with shrinkage: An application in mortality forecasting","authors":"Li Li ,&nbsp;Han Li ,&nbsp;Anastasios Panagiotelis","doi":"10.1016/j.ijforecast.2024.05.001","DOIUrl":null,"url":null,"abstract":"<div><div><span>This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby </span>geographical regions<span> closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.</span></div></div>","PeriodicalId":14061,"journal":{"name":"International Journal of Forecasting","volume":"41 1","pages":"Pages 191-207"},"PeriodicalIF":6.9000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169207024000402","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the technique of gradient boosting with a focus on using domain-specific models instead of trees. The domain of mortality forecasting is considered as an application. The two novel contributions are to use well-known stochastic mortality models as weak learners in gradient boosting rather than trees, and to include a penalty that shrinks mortality forecasts in adjacent age groups and nearby geographical regions closer together. The proposed method demonstrates superior forecasting performance based on US male mortality data from 1969 to 2019. The proposed approach also enables us to interpret and visualize the results. The boosted model with age-based shrinkage yields the most accurate national-level mortality forecast. For state-level forecasts, spatial shrinkage provides further improvement in accuracy in addition to the benefits of age-based shrinkage. This improvement can be attributed to data sharing across states with large and small populations in adjacent regions and states with common risk factors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用收缩技术提升特定领域模型:死亡率预测中的应用
本文扩展了梯度提升技术,重点是使用特定领域的模型而不是树。本文将死亡率预测作为一个应用领域。本文的两个新贡献是:在梯度提升中使用众所周知的随机死亡率模型作为弱学习者,而不是树状学习者;加入惩罚机制,使相邻年龄组和相邻地理区域的死亡率预测更接近。基于 1969 年至 2019 年的美国男性死亡率数据,所提出的方法展示了卓越的预测性能。所提出的方法还使我们能够对结果进行解释和可视化。基于年龄收缩的提升模型产生了最准确的国家级死亡率预测。对于州一级的预测,除了基于年龄的缩减带来的好处外,空间缩减也进一步提高了准确性。这种改进可归因于相邻地区人口多和人口少的各州之间的数据共享,以及具有共同风险因素的各州之间的数据共享。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
17.10
自引率
11.40%
发文量
189
审稿时长
77 days
期刊介绍: The International Journal of Forecasting is a leading journal in its field that publishes high quality refereed papers. It aims to bridge the gap between theory and practice, making forecasting useful and relevant for decision and policy makers. The journal places strong emphasis on empirical studies, evaluation activities, implementation research, and improving the practice of forecasting. It welcomes various points of view and encourages debate to find solutions to field-related problems. The journal is the official publication of the International Institute of Forecasters (IIF) and is indexed in Sociological Abstracts, Journal of Economic Literature, Statistical Theory and Method Abstracts, INSPEC, Current Contents, UMI Data Courier, RePEc, Academic Journal Guide, CIS, IAOR, and Social Sciences Citation Index.
期刊最新文献
Editorial Board Forecasting house price growth rates with factor models and spatio-temporal clustering Forecasting realized volatility with spillover effects: Perspectives from graph neural networks Sparse time-varying parameter VECMs with an application to modeling electricity prices Guest editorial: Forecasting for social good
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1