Effects of acute stress on reward processing: A comprehensive meta-analysis of rodent and human studies

IF 4.3 2区 医学 Q1 NEUROSCIENCES Neurobiology of Stress Pub Date : 2024-05-24 DOI:10.1016/j.ynstr.2024.100647
Martino Schettino , Valeria Tarmati , Paola Castellano , Valeria Gigli , Luca Carnevali , Simona Cabib , Cristina Ottaviani , Cristina Orsini
{"title":"Effects of acute stress on reward processing: A comprehensive meta-analysis of rodent and human studies","authors":"Martino Schettino ,&nbsp;Valeria Tarmati ,&nbsp;Paola Castellano ,&nbsp;Valeria Gigli ,&nbsp;Luca Carnevali ,&nbsp;Simona Cabib ,&nbsp;Cristina Ottaviani ,&nbsp;Cristina Orsini","doi":"10.1016/j.ynstr.2024.100647","DOIUrl":null,"url":null,"abstract":"<div><p>Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects.</p><p>In rodents, acute stress reduced reward responsiveness (<em>g</em> = −1.43) and valuation (<em>g</em> = −0.32), while amplifying reward learning (<em>g</em> = 1.17). In humans, acute stress had marginal effects on valuation (<em>g</em> = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints.</p><p>Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.</p></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"31 ","pages":"Article 100647"},"PeriodicalIF":4.3000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352289524000432/pdfft?md5=99670d9ad52837144ea285d4c1bf4f65&pid=1-s2.0-S2352289524000432-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289524000432","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Stressors can initiate a cascade of central and peripheral changes that modulate mesocorticolimbic dopaminergic circuits and, ultimately, behavioral response to rewards. Driven by the absence of conclusive evidence on this topic and the Research Domain Criteria framework, random-effects meta-analyses were adopted to quantify the effects of acute stressors on reward responsiveness, valuation, and learning in rodent and human subjects.

In rodents, acute stress reduced reward responsiveness (g = −1.43) and valuation (g = −0.32), while amplifying reward learning (g = 1.17). In humans, acute stress had marginal effects on valuation (g = 0.25), without affecting responsiveness and learning. Moderation analyses suggest that acute stress neither has unitary effects on reward processing in rodents nor in humans and that the duration of the stressor and specificity of reward experience (i.e., food vs drugs) may produce qualitatively and quantitatively different behavioral endpoints.

Subgroup analyses failed to reduce heterogeneity, which, together with the presence of publication bias, pose caution on the conclusions that can be drawn and point to the need of guidelines for the conduction of future studies in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急性应激对奖赏加工的影响:啮齿动物和人类研究的综合荟萃分析
压力可引发一系列中枢和外周变化,从而调节中皮质边缘多巴胺能回路,并最终影响对奖赏的行为反应。在啮齿类动物中,急性应激降低了奖赏反应性(g = -1.43 )和评价性(g = -0.32),同时扩大了奖赏学习(g = 1.17)。在人类中,急性应激对估价的影响微乎其微(g = 0.25),但不影响反应性和学习。调节分析表明,急性应激对啮齿类动物和人类的奖赏加工都没有单一的影响,应激持续时间和奖赏体验的特异性(即食物与药物)可能会产生不同质和量的行为终点。亚组分析未能减少异质性,再加上发表偏倚的存在,对可以得出的结论提出了警告,并指出需要为今后开展该领域的研究提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Stress
Neurobiology of Stress Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
9.40
自引率
4.00%
发文量
74
审稿时长
48 days
期刊介绍: Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal. Basic, translational and clinical research on the following topics as they relate to stress will be covered: Molecular substrates and cell signaling, Genetics and epigenetics, Stress circuitry, Structural and physiological plasticity, Developmental Aspects, Laboratory models of stress, Neuroinflammation and pathology, Memory and Cognition, Motivational Processes, Fear and Anxiety, Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse), Neuropsychopharmacology.
期刊最新文献
Behavioral coping with chronic defeat stress in mice: A systematic review of current protocols Sex specific gut-microbiota signatures of resilient and comorbid gut-brain phenotypes induced by early life stress Transcriptome dynamics in mouse amygdala under acute and chronic stress revealed by thiol-labeled RNA sequencing Transient impact of chronic social stress on effort-based reward motivation in non-food restricted mice: Involvement of corticosterone Acute stress activates basolateral amygdala neurons expressing corticotropin-releasing hormone receptor type 1 (CRHR1): Topographical distribution and projection-specific activation in male and female rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1