Lillie E. Bell , Catherine Bardelle , Martin J Packer , Johanna Kastl , Geoffrey A. Holdgate , Gareth Davies
{"title":"Characterisation of high throughput screening outputs for small molecule degrader discovery","authors":"Lillie E. Bell , Catherine Bardelle , Martin J Packer , Johanna Kastl , Geoffrey A. Holdgate , Gareth Davies","doi":"10.1016/j.slasd.2024.100162","DOIUrl":null,"url":null,"abstract":"<div><p>Targeted protein degradation is an important mechanism carried out by the cellular machinery, one that is gaining momentum as an exploitable strategy for the development of drug-like compounds. Molecules which are able to induce proximity between elusive therapeutic targets of interest and E3 ligases which subsequently leads to proteasomal degradation of the target are beginning to decrease the percentage of the human proteome described as undruggable. Therefore, having the ability to screen for, and understand the mechanism of, such molecules is becoming an increasingly attractive scientific focus. We have established a number of cascade experiments including cell-based assays and orthogonal triage steps to provide annotation to the selectivity and mechanism of action for compounds identified as putative degraders from a primary high throughput screen against a high value oncology target. We will describe our current position, using PROTACs as proof-of-concept, on the analysis of these novel outputs and highlight challenges encountered.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2472555224000248/pdfft?md5=dc288a87ff98b6fd26cc25724269aadb&pid=1-s2.0-S2472555224000248-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2472555224000248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted protein degradation is an important mechanism carried out by the cellular machinery, one that is gaining momentum as an exploitable strategy for the development of drug-like compounds. Molecules which are able to induce proximity between elusive therapeutic targets of interest and E3 ligases which subsequently leads to proteasomal degradation of the target are beginning to decrease the percentage of the human proteome described as undruggable. Therefore, having the ability to screen for, and understand the mechanism of, such molecules is becoming an increasingly attractive scientific focus. We have established a number of cascade experiments including cell-based assays and orthogonal triage steps to provide annotation to the selectivity and mechanism of action for compounds identified as putative degraders from a primary high throughput screen against a high value oncology target. We will describe our current position, using PROTACs as proof-of-concept, on the analysis of these novel outputs and highlight challenges encountered.