Cappelli Francesco , Simon Michael Papalexiou , Yannis Markonis , Salvatore Grimaldi
{"title":"PyCoSMoS: An advanced toolbox for simulating real-world hydroclimatic data","authors":"Cappelli Francesco , Simon Michael Papalexiou , Yannis Markonis , Salvatore Grimaldi","doi":"10.1016/j.envsoft.2024.106076","DOIUrl":null,"url":null,"abstract":"<div><p>Simulation models are a fundamental tool for investigating hydrological processes and for water resource management. In this study, we introduce PyCoSMoS, a Python toolbox that enables researchers to simulate observed univariate time series mimicking hydroclimatic processes. This toolbox preserves arbitrary marginal distribution and autocorrelation functions, while significantly reducing computational burden. PyCoSMoS is built upon the mixed-Uniform CoSMoS method recently proposed by Papalexiou et al. (2023). The toolbox is designed to minimize the user’s input, requiring only observed time series, marginal distribution, correlation function, and the number of lags. The output provides both visual and quantitative comparisons between the observed and simulated time series. We evaluate the performance of the package using various synthetic case studies and the results demonstrate satisfactory accuracy. Furthermore, we apply the toolbox to three real case studies: precipitation, temperature, and relative humidity, for which the toolbox can successfully simulate the observed time series in each case.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001373/pdfft?md5=ef4bbfe85137e87765ba1d82ee40c107&pid=1-s2.0-S1364815224001373-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001373","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Simulation models are a fundamental tool for investigating hydrological processes and for water resource management. In this study, we introduce PyCoSMoS, a Python toolbox that enables researchers to simulate observed univariate time series mimicking hydroclimatic processes. This toolbox preserves arbitrary marginal distribution and autocorrelation functions, while significantly reducing computational burden. PyCoSMoS is built upon the mixed-Uniform CoSMoS method recently proposed by Papalexiou et al. (2023). The toolbox is designed to minimize the user’s input, requiring only observed time series, marginal distribution, correlation function, and the number of lags. The output provides both visual and quantitative comparisons between the observed and simulated time series. We evaluate the performance of the package using various synthetic case studies and the results demonstrate satisfactory accuracy. Furthermore, we apply the toolbox to three real case studies: precipitation, temperature, and relative humidity, for which the toolbox can successfully simulate the observed time series in each case.
期刊介绍:
Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.