PyCoSMoS: An advanced toolbox for simulating real-world hydroclimatic data

IF 4.8 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Environmental Modelling & Software Pub Date : 2024-05-18 DOI:10.1016/j.envsoft.2024.106076
Cappelli Francesco , Simon Michael Papalexiou , Yannis Markonis , Salvatore Grimaldi
{"title":"PyCoSMoS: An advanced toolbox for simulating real-world hydroclimatic data","authors":"Cappelli Francesco ,&nbsp;Simon Michael Papalexiou ,&nbsp;Yannis Markonis ,&nbsp;Salvatore Grimaldi","doi":"10.1016/j.envsoft.2024.106076","DOIUrl":null,"url":null,"abstract":"<div><p>Simulation models are a fundamental tool for investigating hydrological processes and for water resource management. In this study, we introduce PyCoSMoS, a Python toolbox that enables researchers to simulate observed univariate time series mimicking hydroclimatic processes. This toolbox preserves arbitrary marginal distribution and autocorrelation functions, while significantly reducing computational burden. PyCoSMoS is built upon the mixed-Uniform CoSMoS method recently proposed by Papalexiou et al. (2023). The toolbox is designed to minimize the user’s input, requiring only observed time series, marginal distribution, correlation function, and the number of lags. The output provides both visual and quantitative comparisons between the observed and simulated time series. We evaluate the performance of the package using various synthetic case studies and the results demonstrate satisfactory accuracy. Furthermore, we apply the toolbox to three real case studies: precipitation, temperature, and relative humidity, for which the toolbox can successfully simulate the observed time series in each case.</p></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1364815224001373/pdfft?md5=ef4bbfe85137e87765ba1d82ee40c107&pid=1-s2.0-S1364815224001373-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815224001373","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Simulation models are a fundamental tool for investigating hydrological processes and for water resource management. In this study, we introduce PyCoSMoS, a Python toolbox that enables researchers to simulate observed univariate time series mimicking hydroclimatic processes. This toolbox preserves arbitrary marginal distribution and autocorrelation functions, while significantly reducing computational burden. PyCoSMoS is built upon the mixed-Uniform CoSMoS method recently proposed by Papalexiou et al. (2023). The toolbox is designed to minimize the user’s input, requiring only observed time series, marginal distribution, correlation function, and the number of lags. The output provides both visual and quantitative comparisons between the observed and simulated time series. We evaluate the performance of the package using various synthetic case studies and the results demonstrate satisfactory accuracy. Furthermore, we apply the toolbox to three real case studies: precipitation, temperature, and relative humidity, for which the toolbox can successfully simulate the observed time series in each case.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PyCoSMoS:模拟真实世界水文气候数据的高级工具箱
模拟模型是研究水文过程和水资源管理的基本工具。在本研究中,我们介绍了 PyCoSMoS,这是一个 Python 工具箱,可帮助研究人员模拟模拟水文气候过程的观测单变量时间序列。该工具箱保留了任意边际分布和自相关函数,同时大大减轻了计算负担。PyCoSMoS 建立在 Papalexiou 等人(2023 年)最近提出的混合均匀 CoSMoS 方法的基础上。该工具箱的设计最大限度地减少了用户的输入,只需要观察到的时间序列、边际分布、相关函数和滞后数。输出结果可对观察到的时间序列和模拟的时间序列进行直观和定量比较。我们使用各种合成案例研究对软件包的性能进行了评估,结果表明其准确性令人满意。此外,我们还将该工具箱应用于三个实际案例研究:降水、温度和相对湿度,在每个案例中,该工具箱都能成功模拟观测到的时间序列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
期刊最新文献
A coordination attention residual U-Net model for enhanced short and mid-term sea surface temperature prediction An R package to partition observation data used for model development and evaluation to achieve model generalizability Dynamics of real-time forecasting failure and recovery due to data gaps: A study using EnKF-based assimilation with the Lorenz model Identification of pedestrian submerged parts in urban flooding based on images and deep learning A conceptual data modeling framework with four levels of abstraction for environmental information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1