Exploring visual quality of multidimensional time series projections

IF 3.8 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Visual Informatics Pub Date : 2024-06-01 DOI:10.1016/j.visinf.2024.04.004
Tanja Munz-Körner, Daniel Weiskopf
{"title":"Exploring visual quality of multidimensional time series projections","authors":"Tanja Munz-Körner,&nbsp;Daniel Weiskopf","doi":"10.1016/j.visinf.2024.04.004","DOIUrl":null,"url":null,"abstract":"<div><p>Dimensionality reduction is often used to project time series data from multidimensional to two-dimensional space to generate visual representations of the temporal evolution. In this context, we address the problem of multidimensional time series visualization by presenting a new method to show and handle projection errors introduced by dimensionality reduction techniques on multidimensional temporal data. For visualization, subsequent time instances are rendered as dots that are connected by lines or curves to indicate the temporal dependencies. However, inevitable projection artifacts may lead to poor visualization quality and misinterpretation of the temporal information. Wrongly projected data points, inaccurate variations in the distances between projected time instances, and intersections of connecting lines could lead to wrong assumptions about the original data. We adapt local and global quality metrics to measure the visual quality along the projected time series, and we introduce a model to assess the projection error at intersecting lines. These serve as a basis for our new uncertainty visualization techniques that use different visual encodings and interactions to indicate, communicate, and work with the visualization uncertainty from projection errors and artifacts along the timeline of data points, their connections, and intersections. Our approach is agnostic to the projection method and works for linear and non-linear dimensionality reduction methods alike.</p></div>","PeriodicalId":36903,"journal":{"name":"Visual Informatics","volume":"8 2","pages":"Pages 27-42"},"PeriodicalIF":3.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468502X24000184/pdfft?md5=67711cade8875f71d3b74dad7d012301&pid=1-s2.0-S2468502X24000184-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Informatics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468502X24000184","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Dimensionality reduction is often used to project time series data from multidimensional to two-dimensional space to generate visual representations of the temporal evolution. In this context, we address the problem of multidimensional time series visualization by presenting a new method to show and handle projection errors introduced by dimensionality reduction techniques on multidimensional temporal data. For visualization, subsequent time instances are rendered as dots that are connected by lines or curves to indicate the temporal dependencies. However, inevitable projection artifacts may lead to poor visualization quality and misinterpretation of the temporal information. Wrongly projected data points, inaccurate variations in the distances between projected time instances, and intersections of connecting lines could lead to wrong assumptions about the original data. We adapt local and global quality metrics to measure the visual quality along the projected time series, and we introduce a model to assess the projection error at intersecting lines. These serve as a basis for our new uncertainty visualization techniques that use different visual encodings and interactions to indicate, communicate, and work with the visualization uncertainty from projection errors and artifacts along the timeline of data points, their connections, and intersections. Our approach is agnostic to the projection method and works for linear and non-linear dimensionality reduction methods alike.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索多维时间序列投影的视觉质量
降维通常用于将时间序列数据从多维空间投影到二维空间,以生成时间演变的可视化表示。在这种情况下,我们提出了一种新方法来显示和处理降维技术在多维时间数据上引入的投影误差,从而解决多维时间序列可视化的问题。为了实现可视化,后续的时间实例被渲染成点,这些点通过线条或曲线连接起来,以表示时间依赖关系。然而,不可避免的投影假象可能会导致可视化质量低下和对时间信息的误读。投影错误的数据点、投影时间实例之间不准确的距离变化以及连接线的交叉点都可能导致对原始数据的错误假设。我们采用局部和全局质量指标来衡量投影时间序列的视觉质量,并引入一个模型来评估相交线的投影误差。这些都是我们新的不确定性可视化技术的基础,这些技术使用不同的可视化编码和交互来显示、交流和处理可视化的不确定性,这些不确定性来自数据点时间轴上的投影误差和伪影、它们之间的连接和交叉。我们的方法与投影方法无关,同样适用于线性和非线性降维方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Visual Informatics
Visual Informatics Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
6.70
自引率
3.30%
发文量
33
审稿时长
79 days
期刊最新文献
Intelligent CAD 2.0 Editorial Board RelicCARD: Enhancing cultural relics exploration through semantics-based augmented reality tangible interaction design JobViz: Skill-driven visual exploration of job advertisements Visual evaluation of graph representation learning based on the presentation of community structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1