Data-driven feedforward control of inertial dampers for accuracy improvement

IF 3.2 3区 工程技术 Q2 ENGINEERING, INDUSTRIAL Cirp Annals-Manufacturing Technology Pub Date : 2024-01-01 DOI:10.1016/j.cirp.2024.04.007
{"title":"Data-driven feedforward control of inertial dampers for accuracy improvement","authors":"","doi":"10.1016/j.cirp.2024.04.007","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a novel control strategy to minimize residual vibrations and overshoot using inertial dampers in repetitive tasks. In this work, vibration data collected during repeating task is utilized to generate a fully pre-scheduled feedforward compensation signal that assists the inertial damper's original feedback controller to further enhance its vibration mitigation capability. Optimal feedforward signal is determined iteratively over successive operations considering the actuator stroke and force limits. Numerical and experimental results validate the approach demonstrating significant (up to 87%) reduction in peak vibration while using equal or less actuator force as compared to the conventional control.</p></div>","PeriodicalId":55256,"journal":{"name":"Cirp Annals-Manufacturing Technology","volume":"73 1","pages":"Pages 317-320"},"PeriodicalIF":3.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cirp Annals-Manufacturing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0007850624000210","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel control strategy to minimize residual vibrations and overshoot using inertial dampers in repetitive tasks. In this work, vibration data collected during repeating task is utilized to generate a fully pre-scheduled feedforward compensation signal that assists the inertial damper's original feedback controller to further enhance its vibration mitigation capability. Optimal feedforward signal is determined iteratively over successive operations considering the actuator stroke and force limits. Numerical and experimental results validate the approach demonstrating significant (up to 87%) reduction in peak vibration while using equal or less actuator force as compared to the conventional control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高惯性阻尼器精度的数据驱动前馈控制
本文提出了一种新颖的控制策略,利用惯性阻尼器在重复性任务中最大限度地减少残余振动和过冲。在这项工作中,重复性任务期间收集的振动数据被用来生成完全预定的前馈补偿信号,以协助惯性阻尼器的原始反馈控制器进一步增强其振动缓解能力。最佳前馈信号是在连续操作中反复确定的,其中考虑到了执行器的行程和力限制。数值和实验结果验证了这种方法,与传统控制相比,在使用相同或更小的致动器力时,峰值振动显著降低(最高达 87%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cirp Annals-Manufacturing Technology
Cirp Annals-Manufacturing Technology 工程技术-工程:工业
CiteScore
7.50
自引率
9.80%
发文量
137
审稿时长
13.5 months
期刊介绍: CIRP, The International Academy for Production Engineering, was founded in 1951 to promote, by scientific research, the development of all aspects of manufacturing technology covering the optimization, control and management of processes, machines and systems. This biannual ISI cited journal contains approximately 140 refereed technical and keynote papers. Subject areas covered include: Assembly, Cutting, Design, Electro-Physical and Chemical Processes, Forming, Abrasive processes, Surfaces, Machines, Production Systems and Organizations, Precision Engineering and Metrology, Life-Cycle Engineering, Microsystems Technology (MST), Nanotechnology.
期刊最新文献
Interfacial characteristics in multi-material laser powder bed fusion of CuZr/316L stainless steel Dynamic characterization and control of a back-support exoskeleton 3D-printed cycloidal actuator Throughput scaling and thermomechanical behaviour in multiplexed fused filament fabrication Generative AI and neural networks towards advanced robot cognition Precision optimized process design for highly repeatable handling with articulated industrial robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1