{"title":"HorSR: High-order spatial interactions and residual global filter for efficient image super-resolution","authors":"Fengsui Wang , Xi Chu","doi":"10.1016/j.image.2024.117148","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advances in efficient image super-resolution (EISR) include convolutional neural networks, which exploit distillation and aggregation strategies with copious channel split and concatenation operations to fully exploit limited hierarchical features. In contrast, the Transformer network presents a challenge for EISR because multiheaded self-attention is a computationally demanding process. To respond to this challenge, this paper proposes replacing multiheaded self-attention in the Transformer network with global filtering and recursive gated convolution. This strategy allows us to design a high-order spatial interaction and residual global filter network for efficient image super-resolution (HorSR), which comprises three components: a shallow feature extraction module, a deep feature extraction module, and a high-quality image-reconstruction module. In particular, the deep feature extraction module comprises residual global filtering and recursive gated convolution blocks. The experimental results show that the HorSR network provides state-of-the-art performance with the lowest FLOPs of existing EISR methods.</p></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"127 ","pages":"Article 117148"},"PeriodicalIF":3.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596524000493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in efficient image super-resolution (EISR) include convolutional neural networks, which exploit distillation and aggregation strategies with copious channel split and concatenation operations to fully exploit limited hierarchical features. In contrast, the Transformer network presents a challenge for EISR because multiheaded self-attention is a computationally demanding process. To respond to this challenge, this paper proposes replacing multiheaded self-attention in the Transformer network with global filtering and recursive gated convolution. This strategy allows us to design a high-order spatial interaction and residual global filter network for efficient image super-resolution (HorSR), which comprises three components: a shallow feature extraction module, a deep feature extraction module, and a high-quality image-reconstruction module. In particular, the deep feature extraction module comprises residual global filtering and recursive gated convolution blocks. The experimental results show that the HorSR network provides state-of-the-art performance with the lowest FLOPs of existing EISR methods.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.