Carlos Quijada-Fuentes , M. Andrea Rodríguez , Diego Seco
{"title":"TRGST: An enhanced generalized suffix tree for topological relations between paths","authors":"Carlos Quijada-Fuentes , M. Andrea Rodríguez , Diego Seco","doi":"10.1016/j.is.2024.102406","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces the <em>TRGST</em> data structure, which is designed to handle queries related to topological relations between paths represented as sequences of stops in a network. As an example, these paths could correspond to stops on a public transport network, and a query of interest is to retrieve paths that share at least <span><math><mi>k</mi></math></span> consecutive stops. While topological relations among spatial objects have received extensive attention, the efficient processing of these relations in the context of trajectory paths, considering both time and space efficiency, remains a relatively less explored domain. Taking inspiration from pattern matching implementations, the <em>TRGST</em> data structure is constructed on the foundation of the Generalized Suffix Tree. Its purpose is to provide a compact representation of a set of paths and to efficiently handle topological relation queries by leveraging the pattern search capabilities inherent in this structure. The paper provides a detailed account of the structure and algorithms of <em>TRGST</em>, followed by a performance analysis utilizing both real and synthetic data. The results underscore the remarkable scalability of the <em>TRGST</em> in terms of both query time and space utilization.</p></div>","PeriodicalId":50363,"journal":{"name":"Information Systems","volume":"125 ","pages":"Article 102406"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306437924000644","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces the TRGST data structure, which is designed to handle queries related to topological relations between paths represented as sequences of stops in a network. As an example, these paths could correspond to stops on a public transport network, and a query of interest is to retrieve paths that share at least consecutive stops. While topological relations among spatial objects have received extensive attention, the efficient processing of these relations in the context of trajectory paths, considering both time and space efficiency, remains a relatively less explored domain. Taking inspiration from pattern matching implementations, the TRGST data structure is constructed on the foundation of the Generalized Suffix Tree. Its purpose is to provide a compact representation of a set of paths and to efficiently handle topological relation queries by leveraging the pattern search capabilities inherent in this structure. The paper provides a detailed account of the structure and algorithms of TRGST, followed by a performance analysis utilizing both real and synthetic data. The results underscore the remarkable scalability of the TRGST in terms of both query time and space utilization.
期刊介绍:
Information systems are the software and hardware systems that support data-intensive applications. The journal Information Systems publishes articles concerning the design and implementation of languages, data models, process models, algorithms, software and hardware for information systems.
Subject areas include data management issues as presented in the principal international database conferences (e.g., ACM SIGMOD/PODS, VLDB, ICDE and ICDT/EDBT) as well as data-related issues from the fields of data mining/machine learning, information retrieval coordinated with structured data, internet and cloud data management, business process management, web semantics, visual and audio information systems, scientific computing, and data science. Implementation papers having to do with massively parallel data management, fault tolerance in practice, and special purpose hardware for data-intensive systems are also welcome. Manuscripts from application domains, such as urban informatics, social and natural science, and Internet of Things, are also welcome. All papers should highlight innovative solutions to data management problems such as new data models, performance enhancements, and show how those innovations contribute to the goals of the application.