Development of simultaneous determination of dopamine 2, histamine 1, and muscarinic acetylcholine receptor occupancies by antipsychotics using liquid chromatography with tandem mass spectrometry
{"title":"Development of simultaneous determination of dopamine 2, histamine 1, and muscarinic acetylcholine receptor occupancies by antipsychotics using liquid chromatography with tandem mass spectrometry","authors":"Gaku Akashita, Eriko Nakatani, Shimako Tanaka, Takashi Okura","doi":"10.1016/j.vascn.2024.107518","DOIUrl":null,"url":null,"abstract":"<div><p>Receptor occupancy is an indicator of antipsychotic efficacy and safety. It is desirable to simultaneously determine the occupancy of multiple brain receptors as an indicator of the efficacy and central side effects of antipsychotics because many of these drugs have binding affinities for various receptors, such as dopamine 2 (D<sub>2</sub>), histamine 1 (H<sub>1</sub>), and muscarinic acetylcholine (mACh) receptors. The purpose of this study was to develop a method for the simultaneous measurement of multiple receptor occupancies in the brain by the simultaneous quantification of unlabeled tracer levels using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rats were pre-administered with a vehicle, displacer, or olanzapine, and mixed solutions of raclopride, doxepin, and 3-quinuclidinyl benzilate (3-QNB) were administered (3, 10, and 30 μg/kg). The brain tissue and plasma tracer concentrations were quantified 45 min later using LC-MS/MS, and the binding potential was calculated. The highest binding potential was observed at 3 μg/kg raclopride, 10 μg/kg doxepin, and 30 μg/kg 3-QNB. Tracer-specific binding at these optimal tracer doses in the cerebral cortex was markedly reduced by pre-administration of displacers. D<sub>2</sub>, H<sub>1,</sub> and mACh receptor occupancy by olanzapine increased in a dose-dependent manner, reaching 70–95%, 19–43%, and 12–45%, respectively, at an olanzapine dose range of 3–10 mg/kg. These results suggest that simultaneous determination of in vivo D<sub>2</sub>, H<sub>1</sub>, and mACh receptor occupancy is possible using LC-MS/MS.</p></div>","PeriodicalId":16767,"journal":{"name":"Journal of pharmacological and toxicological methods","volume":"127 ","pages":"Article 107518"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1056871924000285/pdfft?md5=0aa470113db65314e9a1638b2e796364&pid=1-s2.0-S1056871924000285-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological and toxicological methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1056871924000285","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Receptor occupancy is an indicator of antipsychotic efficacy and safety. It is desirable to simultaneously determine the occupancy of multiple brain receptors as an indicator of the efficacy and central side effects of antipsychotics because many of these drugs have binding affinities for various receptors, such as dopamine 2 (D2), histamine 1 (H1), and muscarinic acetylcholine (mACh) receptors. The purpose of this study was to develop a method for the simultaneous measurement of multiple receptor occupancies in the brain by the simultaneous quantification of unlabeled tracer levels using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Rats were pre-administered with a vehicle, displacer, or olanzapine, and mixed solutions of raclopride, doxepin, and 3-quinuclidinyl benzilate (3-QNB) were administered (3, 10, and 30 μg/kg). The brain tissue and plasma tracer concentrations were quantified 45 min later using LC-MS/MS, and the binding potential was calculated. The highest binding potential was observed at 3 μg/kg raclopride, 10 μg/kg doxepin, and 30 μg/kg 3-QNB. Tracer-specific binding at these optimal tracer doses in the cerebral cortex was markedly reduced by pre-administration of displacers. D2, H1, and mACh receptor occupancy by olanzapine increased in a dose-dependent manner, reaching 70–95%, 19–43%, and 12–45%, respectively, at an olanzapine dose range of 3–10 mg/kg. These results suggest that simultaneous determination of in vivo D2, H1, and mACh receptor occupancy is possible using LC-MS/MS.
期刊介绍:
Journal of Pharmacological and Toxicological Methods publishes original articles on current methods of investigation used in pharmacology and toxicology. Pharmacology and toxicology are defined in the broadest sense, referring to actions of drugs and chemicals on all living systems. With its international editorial board and noted contributors, Journal of Pharmacological and Toxicological Methods is the leading journal devoted exclusively to experimental procedures used by pharmacologists and toxicologists.