{"title":"On Difference-of-SOS and Difference-of-Convex-SOS Decompositions for Polynomials","authors":"Yi-Shuai Niu, Hoai An Le Thi, Dinh Tao Pham","doi":"10.1137/22m1495524","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Optimization, Volume 34, Issue 2, Page 1852-1878, June 2024. <br/> Abstract. In this article, we are interested in developing polynomial decomposition techniques based on sums-of-squares (SOS), namely the difference-of-sums-of-squares (D-SOS) and the difference-of-convex-sums-of-squares (DC-SOS). In particular, the DC-SOS decomposition is very useful for difference-of-convex (DC) programming formulation of polynomial optimization problems. First, we introduce the cone of convex-sums-of-squares (CSOS) polynomials and discuss its relationship to the sums-of-squares (SOS) polynomials, the non-negative polynomials, and the SOS-convex polynomials. Then we propose the set of D-SOS and DC-SOS polynomials and prove that any polynomial can be formulated as D-SOS and DC-SOS. The problem of finding D-SOS and DC-SOS decompositions can be formulated as a semi-definite program and solved for any desired precision in polynomial time using interior point methods. Some algebraic properties of CSOS, D-SOS, and DC-SOS are established. Second, we focus on establishing several practical algorithms for exact D-SOS and DC-SOS polynomial decompositions without solving any SDP. The numerical performance of the proposed D-SOS and DC-SOS decomposition algorithms and their parallel versions, tested on a dataset of 1750 randomly generated polynomials, is reported.","PeriodicalId":49529,"journal":{"name":"SIAM Journal on Optimization","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1495524","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Optimization, Volume 34, Issue 2, Page 1852-1878, June 2024. Abstract. In this article, we are interested in developing polynomial decomposition techniques based on sums-of-squares (SOS), namely the difference-of-sums-of-squares (D-SOS) and the difference-of-convex-sums-of-squares (DC-SOS). In particular, the DC-SOS decomposition is very useful for difference-of-convex (DC) programming formulation of polynomial optimization problems. First, we introduce the cone of convex-sums-of-squares (CSOS) polynomials and discuss its relationship to the sums-of-squares (SOS) polynomials, the non-negative polynomials, and the SOS-convex polynomials. Then we propose the set of D-SOS and DC-SOS polynomials and prove that any polynomial can be formulated as D-SOS and DC-SOS. The problem of finding D-SOS and DC-SOS decompositions can be formulated as a semi-definite program and solved for any desired precision in polynomial time using interior point methods. Some algebraic properties of CSOS, D-SOS, and DC-SOS are established. Second, we focus on establishing several practical algorithms for exact D-SOS and DC-SOS polynomial decompositions without solving any SDP. The numerical performance of the proposed D-SOS and DC-SOS decomposition algorithms and their parallel versions, tested on a dataset of 1750 randomly generated polynomials, is reported.
期刊介绍:
The SIAM Journal on Optimization contains research articles on the theory and practice of optimization. The areas addressed include linear and quadratic programming, convex programming, nonlinear programming, complementarity problems, stochastic optimization, combinatorial optimization, integer programming, and convex, nonsmooth and variational analysis. Contributions may emphasize optimization theory, algorithms, software, computational practice, applications, or the links between these subjects.